Patents Assigned to Trillion Science, Inc.
  • Patent number: 10062660
    Abstract: An anisotropic conductive film (ACF) is disclosed. In one approach, the ACF includes a non-reflective adhesive layer including a top surface, a plurality of conductive particles included with the non-reflective adhesive layer, and a reflective adhesive layer disposed along the top surface of the non-reflective adhesive layer.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: August 28, 2018
    Assignee: TRILLION SCIENCE, INC.
    Inventors: Rong-Chang Liang, Chia-Teng Hsiao, Shun-Pin Yang, Jing-Den Chen, Pi-Yang Chuang
  • Patent number: 9871177
    Abstract: An anisotropic conductive film (ACF) is disclosed. In one approach, the ACF includes a non-reflective adhesive layer including a top surface, a plurality of conductive particles included with the non-reflective adhesive layer, and a reflective adhesive layer disposed along the top surface of the non-reflective adhesive layer. The reflective layer includes at least five percent reflective particles by percentage weight.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: January 16, 2018
    Assignee: TRILLION SCIENCE, INC.
    Inventors: Rong-Chang Liang, Jane Sun, Keren Zhang
  • Publication number: 20170287867
    Abstract: An anisotropic conductive film (ACF) is disclosed. In one approach, the ACF includes a non-reflective adhesive layer including a top surface, a plurality of conductive particles included with the non-reflective adhesive layer, and a reflective adhesive layer disposed along the top surface of the non-reflective adhesive layer.
    Type: Application
    Filed: June 23, 2017
    Publication date: October 5, 2017
    Applicant: Trillion Science, Inc.
    Inventors: Rong-Chang Liang, Chia-Teng Hsiao, Shun-Pin Yang, Jing-Den Chen, Pi-Yang Chuang
  • Publication number: 20170004901
    Abstract: Structures and manufacturing processes of an ACF array and more particularly a non-random particles are transferred to the array of microcavities of predetermined configuration, shape and dimension. The manufacturing process includes fluidic filling of conductive particles surface-treated with a block copolymer composition onto a substrate or carrier web comprising a predetermined array of microcavities. The thus prepared filled conductive microcavity array is then over-coated or laminated with an adhesive film.
    Type: Application
    Filed: July 15, 2016
    Publication date: January 5, 2017
    Applicant: Trillion Science, Inc.
    Inventors: Rong-Chang Liang, Yuhao Sun, Zhiyao An
  • Patent number: 9475963
    Abstract: An ACF comprising a substrate, a layer of an adhesive on the surface of the substrate, the adhesive optionally having conductive particles dispersed therein, at least one tier of conductive particles arranged in a non-random array, the tier being formed by transfer of conductive particles from a carrier belt having a stitching line to the surface of the adhesive layer wherein the portion of the tier corresponding to the stitching line is free of conductive particles, and the adhesive layer being overcoated with a second tier of conductive particles arranged in a non-random array at least in the area of the first tier corresponding to the stitching line. The tiers may be at the same or different depths within the adhesive layer. More than two tiers of conductive particles may be present in the ACF.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: October 25, 2016
    Assignee: TRILLION SCIENCE, INC.
    Inventors: Rong-Chang Liang, Jane Sun, Howard Ho Man Chu, Meng-Chun Lee
  • Patent number: 9352539
    Abstract: A carrier belt for fabricating a device or component such as an anisotropic conductive film. The carrier belt includes a substrate having a sacrificial image enhancing layer. Microcavities are formed in the carrier by laser ablation through the image enhancing layer. After the image enhancement layer is removed, a plurality of conductive particles are distributed into an array of microcavities formed by laser ablation on a surface of a carrier belt and transferred to an adhesive layer. The image enhancing layer enables one to form microcavities with a fine pitch and spacing and partitions having a high aspect ratio.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: May 31, 2016
    Assignee: TRILLION SCIENCE, INC.
    Inventors: Rong-Chang Liang, Chin-Jen Tseng, Ta-Ching Wu, Jia Yen Leong, Zhiyao An, An-Yu Ma, Maung Kyaw Aung
  • Patent number: 9102851
    Abstract: A method for fabricating an electronic device or component such as an anisotropic conductive film comprising: distributing a plurality of conductive particles into an array of microcavities formed on a surface of a continuous carrier belt, rotating the belt carrying the conductive particles while conveying a surface of an adhesive layer into contact with the surface of the rotating belt, transferring the conductive particles from the microcavities on the belt to the adhesive layer in predefined locations in the adhesive layer corresponding to the array of microcavities on the belt, and separating the adhesive layer from the surface of the belt. In one embodiment, the position of the microcavities is varied in a controlled manner.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: August 11, 2015
    Assignee: Trillion Science, Inc.
    Inventors: Jiannrong Lee, Yuhao Sun, Maung Kyaw Aung, Chin-Jen Tseng, Chiapu Chang, Shuji Rokutanda, Rong-Chang Liang
  • Publication number: 20150072109
    Abstract: Structures and manufacturing processes of an ACF array and more particularly a non-random particles are transferred to the array of microcavities of predetermined configuration, shape and dimension. The manufacturing process includes fluidic filling of conductive particles surface-treated with a block copolymer composition onto a substrate or carrier web comprising a predetermined array of microcavities. The thus prepared filled conductive microcavity array is then over-coated or laminated with an adhesive film.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 12, 2015
    Applicant: TRILLION SCIENCE, INC.
    Inventors: Rong-Chang Liang, Yuhao Sun, Zhiyao An
  • Publication number: 20140312501
    Abstract: Structures and manufacturing processes of an ACF array using a non-random array of microcavities of predetermined configuration, shape and dimension. The manufacturing process includes fluidic filling of conductive particles onto a substrate or carrier web comprising a predetermined array of microcavities, of selective metallization of the array followed by filling the array with a filler material and a second selective metallization on the filled microcavity array. The thus prepared filled conductive microcavity array is then over-coated or laminated with an adhesive film. Cavities in the array, and particles filling the cavities, can have a unimodal, bimodal, or multimodal distribution.
    Type: Application
    Filed: May 20, 2014
    Publication date: October 23, 2014
    Applicant: TRILLION SCIENCE INC.
    Inventors: Rong-Chang Liang, Hsiao-Ken Chuang, Jerry Chung, Chin-Jen Tseng, Shuji Rokutanda, Yuhao Sun
  • Publication number: 20140261992
    Abstract: A carrier belt for fabricating a device or component such as an anisotropic conductive film. The carrier belt includes a substrate having a sacrificial image enhancing layer. Microcavities are formed in the carrier by laser ablation through the image enhancing layer. After the image enhancement layer is removed, a plurality of conductive particles are distributed into an array of microcavities formed by laser ablation on a surface of a carrier belt and transferred to an adhesive layer. The image enhancing layer enables one to form microcavities with a fine pitch and spacing and partitions having a high aspect ratio.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: Trillion Science Inc.
    Inventors: Rong-Chang Liang, Chin-Jen Tseng, Ta-Ching Wu, Jia Yen Leong, Zhiyao AN, An-Yu Ma, Maung Kyaw Aung
  • Patent number: 8802214
    Abstract: Structures and manufacturing processes of an ACF array using a non-random array of microcavities of predetermined configuration, shape and dimension. The manufacturing process includes fluidic filling of conductive particles onto a substrate or carrier web comprising a predetermined array of microcavities, or selective metallization of the array followed by filling the array with a filler material and a second selective metallization on the filled microcavity array. The thus prepared filled conductive microcavity array is then over-coated or laminated with an adhesive film. Cavities in the array, and particles filling the cavities, can have a unimodal, bimodal, or multimodal distribution.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: August 12, 2014
    Assignee: Trillion Science, Inc.
    Inventors: Rong-Chang Liang, Jerry Chung, Chinjen Tseng, Shuji Rokutanda, Yuhao Sun, Hsiao-Ken Chuang
  • Patent number: 8481612
    Abstract: A curing agent for epoxy resins that is comprised of the reaction product of an amine, an epoxy resin, and an elastomer-epoxy adduct; compositions containing the curing agent and an epoxy resin; the compositions are useful in electronic displays, circuit boards, semi conductor devices, flip chips and other applications.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: July 9, 2013
    Assignee: Trillion Science, Inc
    Inventors: Yurong Ying, John J. McNamara, Jing Liang, Rong-Chang Liang
  • Publication number: 20130146816
    Abstract: An adhesive composition comprising a phenoxy resin, a latent hardener, an acrylic block co-polymer dispersant and a weak solvent wherein the dispersant enables the phenoxy resin to be dispersed in a weak solvent that does not attack the latent hardener thereby providing a composition with good shelf life. The compositions are useful in making anisotropic conductive films.
    Type: Application
    Filed: February 7, 2013
    Publication date: June 13, 2013
    Applicant: Trillion Science Inc.
    Inventors: Rong-Chang Liang, Yuhao Sun, Chin-Jen Tseng
  • Publication number: 20130071636
    Abstract: A method for fabricating an electronic device or component such as an anisotropic conductive film comprising: distributing a plurality of conductive particles into an array of microcavities formed on a surface of a continuous carrier belt, rotating the belt carrying the conductive particles while conveying a surface of an adhesive layer into contact with the surface of the rotating belt, transferring the conductive particles from the microcavities on the belt to the adhesive layer in predefined locations in the adhesive layer corresponding to the array of microcavities on the belt, and separating the adhesive layer from the surface of the belt. In one embodiment, the position of the microcavities is varied in a controlled manner.
    Type: Application
    Filed: September 15, 2011
    Publication date: March 21, 2013
    Applicant: TRILLION SCIENCE, INC.
    Inventors: Jiannrong Lee, Yuhao Sun, Maung Kyaw Aung, Chin-Jen Tseng, Chiapu Chang, Shuji Rokutanda, Rong-Chang Liang
  • Publication number: 20120295098
    Abstract: Structures and manufacturing processes of an ACF array and more particularly a non-random array of microcavities of predetermined configuration, shape and dimension. The manufacturing process includes fluidic filling of conductive particles surface-treated with a coupling agent onto a substrate or carrier web comprising a predetermined array of microcavities. The thus prepared filled conductive microcavity array is then over-coated or laminated with an adhesive film, the conductive particles are transferred to the adhesive film such that they are only partially embedded in the film.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Applicant: TRILLION SCIENCE, INC.
    Inventors: Jiunn-Jye Hwang, Jiannrong Lee, Shuji Rokutanda, Chin-Jen Tseng, Rong-Chang Liang
  • Publication number: 20120029116
    Abstract: The invention provides an improvement to the useable lifetimes of phenolic-epoxy, phenolic-benzoxazine, phenolic-epoxy-benzoxazine mixtures and other phenolic mixtures through the use of protected phenolics, where a phenolic compound, polymer, or resin is released on demand by the addition of a deblocking agent.
    Type: Application
    Filed: October 6, 2011
    Publication date: February 2, 2012
    Applicant: TRILLION SCIENCE, INC.
    Inventors: Rong-Chang Liang, John J. McNamara, Yurong Ying, Chung-Jen Hou
  • Publication number: 20120007259
    Abstract: A curing agent for epoxy resins that is comprised of the reaction product of an amine, an epoxy resin, and an elastomer-epoxy adduct; compositions containing the curing agent and an epoxy resin; the compositions are useful in electronic displays, circuit boards, semi conductor devices, flip chips and other applications.
    Type: Application
    Filed: September 20, 2011
    Publication date: January 12, 2012
    Applicant: TRILLION SCIENCE, INC.
    Inventors: Yurong Ying, John J. McNamara, Jing Liang, Rong-Chang Liang
  • Patent number: 8084553
    Abstract: The invention provides an improvement to the useable lifetimes of phenolic-epoxy, phenolic-benzoxazine, phenolic-epoxy-benzoxazine mixtures and other phenolic mixtures through the use of protected phenolics, where a phenolic compound, polymer, or resin is released on demand by the addition of a deblocking agent.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: December 27, 2011
    Assignee: Trillion Science, Inc.
    Inventors: Rong-Chang Liang, John J. McNamara, Yurong Ying, Chung-Jen Hou
  • Patent number: 8067484
    Abstract: A curing agent for epoxy resins that is comprised of the reaction product of an amine, an epoxy resin, and an elastomer-epoxy adduct; compositions containing the curing agent and an epoxy resin; the compositions are useful in electronic displays, circuit boards, semi conductor devices, flip chips and other applications.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: November 29, 2011
    Assignee: Trillion Science, Inc.
    Inventors: Yurong Ying, John J. McNamara, Jing Liang, Rong-Chang Liang
  • Patent number: 8044154
    Abstract: Disclosed herein is a curing agent for epoxy resins that is comprised of the reaction product of an amine, an epoxy resin, and an elastomer-epoxy adduct. Additionally disclosed is a process comprising agitating a solution of an amine, an epoxy resin, and an elastomer-epoxy adduct as a dispersant at an elevated temperature in an organic medium.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 25, 2011
    Assignee: Trillion Science, Inc.
    Inventors: John J. McNamara, Yurong Ying, Rong-Chang Liang