Patents Assigned to True Wearables, Inc.
  • Patent number: 11647924
    Abstract: Apparatus and methods provide wireless, disposable, continuous pulse oximeter sensor technology, useful and beneficial for a number of applications including relatively extended periods of data collection, and/or packaged in compact and easy-to-use assemblies. Economic fabrication and use provides flexible methodologies that can reduce the overall costs of monitoring and collecting patient's physiological data, and provide relatively greater ease and comfort to the patient. A disposable wireless continuous pulse oximeter sensor has a reduced emitter-detector separation, a low-power frontend, and a low-cost processor that sends waveforms to a host device so that the host can calculate and display the parameters of interest. Complications created by the reduced distance between emitter and detector are minimized by using an emitter-detector assembly with an optically dark background, and a bandage for improved optical compliance.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: May 16, 2023
    Assignee: True Wearables, Inc.
    Inventors: Marcelo Malini Lamego, Tatiana Buticosky Lamego
  • Publication number: 20220202362
    Abstract: Monitoring devices and monitoring technology are disclosed for a number of applications. A monitoring device that attaches to a measurement site includes at least one of an optical sensor, a temperature sensor, or first and second electrical contact sensors. A monitoring device or a smart garment can be powered by one or more bio-batteries that is each formed by electrodes in contact with the user's body (e.g., skin) or an animal. Various method and algorithms can be used to process signals received from the optical sensor, a temperature sensor, and/or first and second electrical contact sensors. The signals received from the optical sensor, a temperature sensor, and/or first and second electrical contact sensors can be transmitted to a host device. An application program on a host device can process the signals to compute one or more physiological parameters, waveform data, trend data, and/or one or more reports.
    Type: Application
    Filed: July 27, 2020
    Publication date: June 30, 2022
    Applicant: True Wearables, Inc.
    Inventors: Marcelo Malini LAMEGO, Tatiana Buticosky LAMEGO, Isadora Buticosky LAMEGO, Larissa Buticosky LAMEGO
  • Patent number: 11109783
    Abstract: Apparatus and methods provide wireless, disposable, continuous pulse oximeter sensor technology, useful and beneficial for a number of applications including relatively extended periods of data collection, and/or packaged in compact and easy-to-use assemblies. Economic fabrication and use provides flexible methodologies that can reduce the overall costs of monitoring and collecting patient's physiological data, and provide relatively greater ease and comfort to the patient. A disposable wireless continuous pulse oximeter sensor has a reduced emitter-detector separation, a low-power frontend, and a low-cost processor that sends waveforms to a host device so that the host can calculate and display the parameters of interest. Complications created by the reduced distance between emitter and detector are minimized by using an emitter-detector assembly with an optically dark background, and a bandage for improved optical compliance.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: September 7, 2021
    Assignee: True Wearables, Inc.
    Inventors: Marcelo Malini Lamego, Tatiana Buticosky Lamego
  • Publication number: 20210022676
    Abstract: Monitoring devices and monitoring technology are disclosed for a number of applications. A monitoring device that attaches to a measurement site includes at least one of an optical sensor, a temperature sensor, or first and second electrical contact sensors. A monitoring device or a smart garment can be powered by one or more bio-batteries that is each formed by electrodes in contact with the user's body (e.g., skin) or an animal. Various method and algorithms can be used to process signals received from the optical sensor, a temperature sensor, and/or first and second electrical contact sensors. The signals received from the optical sensor, a temperature sensor, and/or first and second electrical contact sensors can be transmitted to a host device. An application program on a host device can process the signals to compute one or more physiological parameters, waveform data, trend data, and/or one or more reports.
    Type: Application
    Filed: July 27, 2020
    Publication date: January 28, 2021
    Applicant: True Wearables, Inc.
    Inventors: Marcelo Malini LAMEGO, Tatiana Buticosky LAMEGO, Isadora Buticosky LAMEGO, Larissa Buticosky LAMEGO
  • Publication number: 20200330012
    Abstract: Apparatus and methods provide wireless, disposable, continuous pulse oximeter sensor technology, useful and beneficial for a number of applications including relatively extended periods of data collection, and/or packaged in compact and easy-to-use assemblies. Economic fabrication and use provides flexible methodologies that can reduce the overall costs of monitoring and collecting patient's physiological data, and provide relatively greater ease and comfort to the patient. A disposable wireless continuous pulse oximeter sensor has a reduced emitter-detector separation, a low-power frontend, and a low-cost processor that sends waveforms to a host device so that the host can calculate and display the parameters of interest. Complications created by the reduced distance between emitter and detector are minimized by using an emitter-detector assembly with an optically dark background, and a bandage for improved optical compliance.
    Type: Application
    Filed: July 1, 2020
    Publication date: October 22, 2020
    Applicant: True Wearables, Inc.
    Inventors: Marcelo Malini LAMEGO, Tatiana Buticosky LAMEGO