Abstract: An automated method of improving digital color images at high speed, which supports pipe-lining and has very little memory requirements, and is therefore specially suitable for on-the-fly processing of real time video, as well as for processing of large batches of images without the need of human intervention. The method includes a novel dynamic range adaptation scheme that operates on the norm of the image, which is suitable as is for gray-scale images. For, color images, a simple color reconstruction stage is added that maintains optimal color fidelity.
Abstract: A method of compressing and decompressing an image, and an associated system. In an encoder, the image is partitioned among boundary pixels and interior blocks. The boundaries of the interior blocks are interpolated, preferably using dynamic programming, to produce approximation sets that are subtracted from the interior blocks to produce difference sets. The boundary pixels and the difference sets are transmitted to a decoder that interpolates the boundaries to reconstruct the approximation sets, adds the reconstructed approximation sets to the difference sets to reconstruct the interior blocks, and merges the interior blocks with the boundary pixels to reconstruct the image.
Abstract: An automated method of improving digital color images at high speed, which supports pipe-lining and has very little memory requirements, and is therefore specially suitable for on-the-fly processing of real time video, as well as for processing of large batches of images without the need of human intervention. The method includes a novel dynamic range adaptation scheme that operates on the norm of the image, which is suitable as is for non-color images. For color images, a simple color reconstruction stage is added that maintains optimal color fidelity.