Abstract: A method for ascertaining the presence of target-bound microbubbles in the context of ultrasound molecular imaging is taught. This method, referred to herein as dynamic scaling ultrasound molecular imaging, relies upon the time-varying behavior contrast agents within a region expressing a molecular imaging target and that within a reference region. Ultrasound contrast agents compositions that enable use of the method are also taught. The method is useful for the use of ultrasound molecular imaging in diagnosing and monitoring treatment.
Type:
Grant
Filed:
March 13, 2019
Date of Patent:
September 26, 2023
Assignee:
Trust Bio-Sonics, Inc.
Inventors:
Joshua Rychak, Shih-Tsung Kang, ChungHsin Wang
Abstract: A method of producing lipid-based micro/nano bubbles includes steps of (a) preparing a lipid mixture including one or more first lipids with different phase transition temperature, and a second lipid bonding with a hydrophilic polymer moiety or molecules capable of getting across a lipid membrane and decreasing van der Waals forces between lipid bilayers; (b) emulsifying the lipid mixture with a solvent, to form a transparent lipid carrier solution; (c) placing the transparent lipid carrier solution in a closed vessel with halo-substituted hydrocarbon; (d) manipulating temperature of the transparent lipid carrier solution to be close to a main phase transition temperature thereof; and (e) agitating in a mechanical manner the vessel containing the transparent lipid carrier solution to form micro/nano bubbles within the closed vessel. This method contributes to form micro/nano bubbles with desired diameters in a way of optimal material utilization efficiency.
Abstract: A method of producing lipid-based micro/nano bubbles includes steps of (a) preparing a lipid mixture including one or more first lipids with different phase transition temperature, and a second lipid bonding with a hydrophilic polymer moiety or molecules capable of getting across a lipid membrane and decreasing van der Waals forces between lipid bilayers; (b) emulsifying the lipid mixture with a solvent, to form a transparent lipid carrier solution; (c) placing the transparent lipid carrier solution in a closed vessel with halo-substituted hydrocarbon; (d) manipulating temperature of the transparent lipid carrier solution to be close to a main phase transition temperature thereof; and (e) agitating in a mechanical manner the vessel containing the transparent lipid carrier solution to form micro/nano bubbles within the closed vessel. This method contributes to form micro/nano bubbles with desired diameters in a way of optimal material utilization efficiency.