Patents Assigned to Trustees of the University of Pennsylvania
  • Patent number: 11793887
    Abstract: Methods and compositions are provided for treatment of peroxisomal biogenesis disorders (PBDs). More particularly, recombinant adeno-associated viruses (rAAV) provided in the form of compositions are used to deliver a nucleic acid encoding human PEX1 to host cells. The rAAVs comprise a AAV capsid, and packaged therein a vector genome comprising an AAV 5? inverted terminal repeat (ITR) sequence; a promoter; a coding sequence encoding a human PEX1; and an AAV 3? ITR.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: October 24, 2023
    Assignees: The Trustees of the University of Pennsylvania, University of Southern California, The Research Institute of McGill University Health Centre
    Inventors: Nancy Braverman, Catherine Argyriou, Joseph Hacia, Jean Bennett, Junwei Sun, Ji Yun Song, Devin McDougald
  • Patent number: 11786879
    Abstract: This disclosure demonstrates a new method to produce three dimensional multiphasic structures, including bijels, via vapor-induced phase separation (VIPS). In VIPS, the evaporation of the co-solvent from a ternary mixture of oil, water and ethanol, induces phase separation. Particles present in the mixture attach to the interface and arrest the phase separation between water and oil. VIPS enables, inter alia, the fabrication of films and coatings via spreading or spraying particle-laden suspension onto a surface without the need for an outer aqueous phase.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: October 17, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Daeyeon Lee, Kathleen J Stebe, Tiancheng Wang
  • Patent number: 11786551
    Abstract: The present invention includes compositions and methods for treating heart disease and/or heart failure. In one embodiment, the treatment includes administering to the subject a cell genetically modified to express a chimeric antigen receptor (CAR), comprising an antigen binding domain specific for fibroblast activation protein (FAP). In another embodiment, the treatment includes administering a cell genetically modified to express a T cell receptor (TCR) specific for an activated fibroblast.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: October 17, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Jonathan Epstein, Haig Aghajanian, Steven M. Albelda, Ellen Puré
  • Patent number: 11786186
    Abstract: A super-resolution digital tomosynthesis system for imaging an object including a source configured to emit penetrating particles toward an object; a detector configured to acquire a series of projection images of the object in response to the penetrating particles from the source; positioning apparatus configured to position the source and the detector; and an imaging system coupled to the source, the detector, and the positioning apparatus. The imaging system is configured to control the positioning apparatus to position the source in relation to the detector along a scan path and to change a distance between the source and the detector, control the source and the detector to acquire the series of projection images along the scan path with the distance change between the source and detector, and construct a tomographic volume exhibiting super-resolution from data representing the acquired series of projection images.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: October 17, 2023
    Assignees: The Trustees of the University of Pennsylvania, Real Time Tomography, LLC
    Inventors: Andrew D. A. Maidment, Raymond J. Acciavatti, Susan Ng, Peter A. Ringer, Johnny Kuo
  • Patent number: 11791142
    Abstract: A small-gap device system, preferably including two or more electrodes and one or more spacers maintaining a gap between two or more of the electrodes. A spacer for a small-gap device system, preferably including a plurality of legs defining a mesh structure. A method of spacer and/or small-gap device fabrication, preferably including: defining lateral features, depositing spacer material, selectively removing spacer material, separating the spacer from a fabrication substrate, and/or assembling the small-gap device.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: October 17, 2023
    Assignees: Spark Thermionics, Inc., The Trustees of the University of Pennsylvania
    Inventors: Matthew Campbell, Mohsen Azadi, Kyana Van Houten, Jared William Schwede, Samuel M. Nicaise, Igor Bargatin
  • Patent number: 11786914
    Abstract: A magnetic separation filter has an unsupported magnetically soft material layer having a plurality of pores, and, optionally, a passivation layer disposed on the magnetically soft material layer. The magnetic separation filter may be part of a microfluidic device having a lateral flow channel and a vertical flow magnetic separation filter. The magnetic separation device may be used to separate magnetically tagged particles, such as cells.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: October 17, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: David Issadore, Venkata Yelleswarapu, Jina Ko
  • Patent number: 11791143
    Abstract: A small-gap device system, preferably including two or more electrodes and one or more spacers maintaining a gap between two or more of the electrodes. A spacer for a small-gap device system, preferably including a plurality of legs defining a mesh structure. A method of spacer and/or small-gap device fabrication, preferably including: defining lateral features, depositing spacer material, selectively removing spacer material, separating the spacer from a fabrication substrate, and/or assembling the small-gap device.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: October 17, 2023
    Assignees: Spark Thermionics, Inc., The Trustees of the University of Pennsylvania
    Inventors: Jared William Schwede, Igor Bargatin, Samuel M. Nicaise, Chen Lin, John Provine
  • Publication number: 20230323312
    Abstract: A two-step chromatography purification scheme is described which selectively captures and isolates the genome-containing rAAV vector particles from the clarified, concentrated supernatant of a rAAV production cell culture. The process utilizes an affinity capture method performed at a high salt concentration followed by an anion exchange resin method performed at high pH to provide rAAV vector particles which are substantially free of rAAV intermediates.
    Type: Application
    Filed: June 13, 2023
    Publication date: October 12, 2023
    Applicant: The Trustees of the University of Pennsylvania
    Inventors: Martin Lock, Mauricio Alvira
  • Patent number: 11779644
    Abstract: Materials and methods for enhancing the effectiveness of proton radiation therapy (e.g., high linear energy transfer (LET) proton radiation therapy) against tumor cells are provided herein.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: October 10, 2023
    Assignees: Humanetics Corporation, Trustees of the University of Pennsylvania
    Inventors: Adam J. Harvey, Michael D. Kaytor, Keith Cengel, Eric Stanton Diffenderfer
  • Patent number: 11779656
    Abstract: Compositions and regimens useful in treating hemophilia A are provided. The compositions include recombinant adeno-associated virus (rAAV) with a transthyretin enhancer and promoter driving expression of a human Factor VIII.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: October 10, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Lili Wang, James M. Wilson, Jenny Agnes Sidrane
  • Patent number: 11779570
    Abstract: The present invention concerns the use of compounds and compositions for the treatment or prevention of Flavivirus infections, such as dengue virus infections and Zika virus infections. Aspects of the invention include methods for treating or preventing Flavivirus virus infection, such as dengue virus and Zika virus infection, by administering a compound or composition of the invention, to a subject in need thereof; methods for inhibiting Flavivirus infections, such as dengue virus and Zika virus infections, in a cell in vitro or in vivo; pharmaceutical compositions; packaged dosage formulations; and kits useful for treating or preventing Flavivirus infections, such as dengue virus and Zika virus infections.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: October 10, 2023
    Assignees: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, Inc., The United States of America, as represented by the Secretary, Department of Health and Human Services, THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Hengli Tang, Emily M. Lee, Wei Zheng, Ruili Huang, Miao Xu, Wenwei Huang, Khalida Shamim, Guoli Ming, Hongjun Song
  • Publication number: 20230313186
    Abstract: The invention relates to compositions and methods for improving a dystrophic phenotype in a human subject having myopathies, such as Duchenne Muscular Dystrophy (DMD). In one embodiment, the invention relates to compositions comprising an adenoviral vector targeting the let-7c miRNA binding sequence in 3?-UTR genome editing of the utrophin gene and methods of treatment comprising administration thereof.
    Type: Application
    Filed: July 26, 2021
    Publication date: October 5, 2023
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventor: Tejvir S. KHURANA
  • Patent number: 11771719
    Abstract: The present invention relates to compositions and methods of generating modified hematopoietic stem or progenitor cells. One aspect of the invention includes a modified hematopoietic stem or progenitor cell comprising a nucleic acid capable of decreasing expression of an endogenous gene or a portion thereof, wherein the endogenous gene encodes a polypeptide comprising an antigen domain targeted by a chimeric antigen receptor (CAR). Another aspect of the invention includes a method for generating a modified hematopoietic stem or progenitor cell. Also included are methods and pharmaceutical compositions comprising the modified cell for adoptive therapy and treating a condition, such as an autoimmune disease or cancer.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: October 3, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Saar Gill, Miriam Kim
  • Patent number: 11776893
    Abstract: Metallic alloy interconnects (which can comprise copper) with low electrical resistivity and methods for making the same are disclosed. The electrical resistivity of thin film copper alloys was reduced by 36% with niobium solute and by 51% with iron solute compared to pure copper counterpart in dilute solute regimes (0-1.5 atomic %). The fabrication method is operated at room temperature, and does not require a high temperature annealing step.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: October 3, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Daniel S. Gianola, Gyuseok Kim
  • Patent number: 11766453
    Abstract: The present disclosure provides modified immune cells or precursors thereof (e.g. T cells) comprising a chimeric antigen receptor (CAR) capable of binding human PSCA. CARs capable of binding human PSCA, and nucleic acids encoding the same are also provided. Provided herein are bispecific CARs capable of binding human PSCA and human PSMA, nucleic acids encoding the same, and modified immune cells comprising the same. Modified immune cells comprising a PSMA CAR and a PSCA CAR are also provided. Compositions and methods of treatment are also provided.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: September 26, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventor: Yangbing Zhao
  • Patent number: 11767473
    Abstract: Provided are compositions that include a nematic colloid, the nematic colloid comprising a nematic liquid crystal and a key colloid; and a lock colloid, the lock colloid optionally having at least two arms extending therefrom, the lock colloid being configured for assembly with the key colloid of the nematic colloid, the assembly optionally being mediated by a dipole interaction between the colloid and the lock colloid, by a disinclination line of the nematic colloid, or any combination thereof. Also provided are related methods. The disclosed compositions and methods can be used to, e.g., assemble chain and lattice structures from the key colloids by exploiting disinclination lines and dipole defects of the components of the compositions.
    Type: Grant
    Filed: May 25, 2022
    Date of Patent: September 26, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Tianyi Yao, Kathleen J Stebe
  • Patent number: 11766448
    Abstract: A method of altering the targeting and/or cellular uptake efficiency of an adeno-associated virus (AAV) viral vector having a capsid containing an AAV9 cell surface binding domain is described. The method involves modifying a clade F cell surface receptor which comprises a glycan having a terminal sialic acid residue and a penultimate ?-galactose residue. The modification may involve retargeting the vector by temporarily functionally ablate AAV9 binding in a subset of cells, thereby redirecting the vector to another subset of cells. Alternatively, the modification may involve increasing cellular update efficiency by treating the cells with a neuraminidase to expose cell surface ?-galactose. Also provided are compositions containing the AAV9 vector and a neuraminidase. Also provided is a method for purifying AAV9 using ?-galactose linked to solid support.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: September 26, 2023
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: James M. Wilson, Christie L. Bell, Luc H. Vandenberghe
  • Patent number: 11761959
    Abstract: The invention relates to methods for providing prognosis, diagnosis, and treatment of a mild traumatic brain injury (mTBI) in a computed tomography (CT)-negative subject. The invention further relates to monitoring the severity of brain damage resulting from TBI in a subject and determining the prognosis of a subject that has suffered from mTBI. This invention also relates to methods of predicting who is at risk for developing brain damage and long-term dysfunction.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: September 19, 2023
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventor: Robert Siman
  • Patent number: 11761128
    Abstract: A method for modeling textile structures using bicontinuous surfaces includes selecting a virtual scaffold of bicontinuous surfaces defining textile fabrication pathways to model spatial relationships between the pathways and yarns in a desired yarn pattern of a textile fabric design. The method further includes constructing a yarn pathway across the bicontinuous surfaces that form the virtual scaffold. The method further includes removing or releasing tension from the virtual scaffold, thereby allowing yarns to relax and determining a physical property of the textile fabric design.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: September 19, 2023
    Assignees: Drexel University, The Trustees of the University of Pennsylvania
    Inventors: Genevieve Eugenie Dion, Randall Kamien, Michael David Tanis, Amy Lynne Stoltzfus, Chelsea E. Amanatides, Toen Castle, David Edward Breen, Paras Wadekar
  • Patent number: 11752159
    Abstract: The present invention includes a method of suppressing systemic immune response in a subject, the method comprising topically administering a pharmaceutically effective amount of a vitamin D analog to a subject in need thereof. The present invention further includes a method of treating an autoimmune disease in a subject, the method comprising topically administering a pharmaceutically effective amount of a vitamin D analog to a subject in need thereof.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: September 12, 2023
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventor: Taku Kambayashi