Patents Assigned to Tsinghua University
  • Patent number: 10877187
    Abstract: The disclosure relates to a hydrophobic mirror. The hydrophobic mirror includes a support; a mirror body set in the support; and a hydrophobic film located on a surface of the mirror body. The hydrophobic film comprises a flexible substrate and a hydrophobic layer. The flexible substrate comprises a flexible base and a patterned first bulge layer located on a surface of the flexible base. The hydrophobic layer located on the surface of the patterned first bulge layer.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: December 29, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 10879478
    Abstract: A polymer solar cell includes an anode electrode, a photoactive layer, an insulating layer, a cathode electrode stacked on each other in that order. The photoactive layer includes a polymer layer and a plurality of carbon nanotubes dispersed in the polymer layer. Each of the plurality of carbon nanotubes includes a first end and a second end opposite to the first end, the first end passes through the insulating layer and is in direct contact with the cathode electrode, and the second end is embedded in the polymer layer.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: December 29, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Wen Ning, Peng Liu, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10879525
    Abstract: A method of making a stretchable composite electrode is provided. An elastic substrate is pre-stretched along a first direction and a second direction, to obtain a pre-stretched elastic substrate. A carbon nanotube active material composite layer is laid on a surface of the pre-stretched elastic substrate. And the pre-stretching of the elastic substrate is removed, and a plurality of wrinkles is formed on a surface of the carbon nanotube active material composite layer.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: December 29, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Yu, Jia-Ping Wang, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20200400853
    Abstract: A fluxgate detector for buried and abandoned chemical weapons is provided, comprising: a probe for sensing an external magnetic field, comprising a probe input and a probe output; an excitation module electrically connected to the probe input for inputting an excitation signal into the probe; a frequency selection module electrically connected to the probe output for isolating a second harmonic signal in an induced voltage generated by the probe; and a signal acquisition module electrically connected to the frequency selection module. The second harmonic signal in the induced voltage can be isolated by the frequency selection module, transmitted to the signal acquisition module, and converted to an intensity of the magnetic field by the signal acquisition module. The substance detected can be identified according to the intensity of the magnetic field, so that the buried ACWs can be found efficiently and accurately.
    Type: Application
    Filed: December 27, 2018
    Publication date: December 24, 2020
    Applicant: Tsinghua University
    Inventors: XIAO-PING ZHENG, LI YANG, HUA GENG
  • Patent number: 10869910
    Abstract: Provided is a mutant of an endostatin. The mutant has improved ATPase activity and improved activity of inhibiting angiogenesis and inhibiting tumors. Further provided is use of the mutant in treatment of angiogenesis related diseases such as tumors.
    Type: Grant
    Filed: February 14, 2016
    Date of Patent: December 22, 2020
    Assignees: Tsinghua University, BEIJING PROTGEN LTD.
    Inventors: Yongzhang Luo, Peng Liu, Xinan Lu
  • Patent number: 10869035
    Abstract: An encoding method with multiple image block division manners is disclosed, including: determining a division manner and a division direction of an image block; dividing the image block to obtain image subblocks sequentially arranged horizontally or vertically; determining whether the image subblocks need subdivision, and if subdivision is not needed, predicting the encoding object in the frame according to the image subblocks, to obtain residual data; performing transformation, quantization, and entropy encoding for the residual data so as to obtain coded residual data; and writing the division manner of the image block, the division direction of the image block, an identifier indicating whether the image subblocks need subdivision, and the coded residual data into a bitstream. By applying the encoding method, better prediction accuracy can be achieved when the image block presents a small change of pixel value in the horizontal or vertical direction.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: December 15, 2020
    Assignees: Tsinghua University, Huawei Technologies Co., Ltd.
    Inventors: Changcai Lai, Xiaoran Cao, Yongbing Lin, Lingzhi Liu, Yun He
  • Patent number: 10866039
    Abstract: A thermal transistor is provided. The thermal transistor includes a metallic thermal conductor, a non-metallic thermal conductor, and a thermal resistance adjusting unit. The metallic thermal conductor and the non-metallic thermal conductor are contact with each other to form a thermal interface. The thermal resistance adjusting unit is configured to generate an bias voltage U12 between the metallic thermal conductor and the non-metallic thermal conductor.
    Type: Grant
    Filed: December 25, 2018
    Date of Patent: December 15, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Zheng Duan, Chang-Hong Liu, Shou-Shan Fan
  • Patent number: 10859329
    Abstract: A thermal transistor is provided. The thermal transistor includes a metallic thermal conductor, a non-metallic thermal conductor, and a thermal resistance adjusting unit. The metallic thermal conductor and the non-metallic thermal conductor are contact with each other to form a thermal interface. The thermal resistance adjusting unit is configured to generate an electric field at the thermal interface.
    Type: Grant
    Filed: December 25, 2018
    Date of Patent: December 8, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Zheng Duan, Chang-Hong Liu, Shou-Shan Fan
  • Patent number: 10859501
    Abstract: A carrier for single molecule detection is related. The carrier includes a substrate; a middle layer, on the substrate; and a metal layer, on the middle layer; wherein the substrate is a flexible substrate, the middle layer includes a base and a patterned bulge on the base, the patterned bulge includes a plurality of strip-shaped bulges, the metal layer is on the patterned bulge.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: December 8, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ying-Cheng Wang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 10852267
    Abstract: A biosensor electrode comprises comprising a porous structure comprising a plurality of metal ligaments and a plurality of pores; and at least one carbon nanotube structure embedded in the porous structure and comprising a plurality of carbon nanotubes joined end to end by van der Waals attractive force, wherein the plurality of carbon nanotubes are arranged along a same direction.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: December 1, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Hong-Ying Fu, Wen-Zhen Li
  • Patent number: 10852241
    Abstract: A method for detecting molecular is related. The method includes providing a sample, in which a sample surface is distributed with analyte molecules; providing a carrier including a substrate, a middle layer and a metal layer, in which the middle layer is sandwiched between the substrate and the metal layer, the middle layer includes a base and a patterned bulge on a surface of the base, the patterned bulge includes a plurality of strip-shaped bulges intersected with each other to form a net and define a number of holes, and the metal layer is on the patterned bulge; placing the carrier on the sample surface to make the metal layer being attached to the sample surface, in which parts of the analyte molecules are formed on the metal layer; detecting the analyte molecules on the metal layer with a detector.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: December 1, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ying-Cheng Wang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 10854875
    Abstract: The present disclosure relates to a method for making an electrode material of lithium-ion batteries. In the method, a lithium source solution and a plurality of titanium source particles are provided. The lithium source solution and the titanium source particles are mixed, wherein a molar ratio of lithium element to titanium element is in a range from about 4:5 to about 9:10, thereby forming a sol. A carbon source compound is dispersed into the sol to form a sol mixture. The sol mixture is spray dried to form a plurality of precursor particles. The precursor particles are heated to form a lithium titanate composite electrode material.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: December 1, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jian Gao, Xiang-Ming He, Jian-Jun Li, Wei-Hua Pu, Jian-guo Ren, Li Wang
  • Patent number: 10854394
    Abstract: A stretchable capacitor electrode-conductor structure includes a capacitor electrode and a conductor structure forming an integrated molding. The capacitor electrode includes a plurality of carbon nanotube layers, and an active substance layer is located between adjacent carbon nanotube layers. Both the carbon nanotube layer and the conductor structure include a plurality of super-aligned carbon nanotube films. A surface of the stretchable capacitor electrode-conductor structure comprises a plurality of wrinkles. A stretchable supercapacitor including the stretchable capacitor electrode-conductor structure is also provided.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: December 1, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Yu, Jia-Ping Wang, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20200371021
    Abstract: A gas detecting apparatus and a gas detecting method based on terahertz spectroscopy are provided. The apparatus includes a sample chamber allowing a terahertz wave to pass therethrough; a gas feeding unit connected to the sample chamber to feed gas into the sample chamber; a gas outputting unit connected to the sample chamber to output gas from the sample chamber; and a vacuum pump connected to the sample chamber to evacuate the sample chamber. The apparatus further comprises one or more of a pressure gauge disposed on the sample chamber, an anemometer disposed on the sample chamber, a humidity regulation device connected to the sample chamber, and a temperature regulation device connected to the sample chamber.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 26, 2020
    Applicant: Tsinghua University
    Inventors: XIAO-PING ZHENG, SHAN ZHANG, HUA GENG, XIAO-JIAO DENG, JIA LI, ZHI-JIE LI
  • Patent number: 10844508
    Abstract: A method of making a nanoporous copper is provided. A copper alloy layer and at least one active metal layer are provided. The copper alloy layer comprises a first surface and a second surface. The at least one active metal layer is located on the first surface and the second surface to form a structure. The structure is processed to form a composite structure. A process of folding and pressing the composite structure is repeated to form a precursor. The precursor is corroded to form the nanoporous copper.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: November 24, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yue-Feng Meng, Lun-Qiao Xiong, Yuan-Feng Liu, Ze-Cheng Hou, Hong-Ying Fu, Lin Zhu, Wen-Zhen Li
  • Patent number: 10847737
    Abstract: A light detector includes a semiconductor element, a first electrode, a second electrode and a current detecting element electrically connected with each other to form a circuit. The semiconductor element includes a semiconductor structure, a carbon nanotube and a transparent conductive film. The semiconductor structure includes a P-type semiconductor layer and an N-type semiconductor layer and defines a first surface and a second surface. The carbon nanotube is located on the first surface of the semiconductor. The transparent conductive film is located on the second surface of the semiconductor. The transparent conductive film is formed on the second surface by a depositing method or a coating method.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: November 24, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jin Zhang, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10848306
    Abstract: The present disclosure provides a system and method of implementing a security algorithm using a reconfigurable processor, the method including: determining a plurality of sub-algorithms for constructing the security algorithm; and configuring the reconfigurable processor to implement the security algorithm according to a first configuration information of each sub-algorithm of the plurality of sub-algorithms and a first combination configuration information indicating a combination connection relationship of each of the sub-algorithms. The present disclosure also provides a system and method of implementing a decryption algorithm using a reconfigurable processor.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: November 24, 2020
    Assignee: Wuxi Research Institute of Applied Technologies Tsinghua University
    Inventors: Leibo Liu, Min Zhu, Shaojun Wei
  • Patent number: 10844480
    Abstract: A method for making carbon nanotube film includes providing a growth substrate having a first surface and a second surface opposite to the first surface. A catalyst layer is placed on the first surface. The growth substrate and the catalyst layer are placed in a reaction chamber. The carbon source gas and hydrogen are supplied into the reaction chamber at a growth temperature of a plurality of carbon nanotubes. An electric field is applied to the growth substrate, wherein an electric field direction of the electric field is from the first surface to the second surface. After the plurality of carbon nanotubes fly away from the growth substrate, the electric field is stopped applying to the growth substrate, and the carbon source gas and hydrogen are continually supplied into the reaction chamber.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: November 24, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jiang-Tao Wang, Bing-Yu Xia, Peng Liu, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20200365805
    Abstract: The present application discloses a topological insulator structure including an insulating substrate, a topological insulator quantum well film, and an insulating protective layer. The topological insulator quantum well film and the insulating protective layer are orderly stacked on a surface of the insulating substrate, forming a heterojunction structure. The insulating protective layer is selected from the group consisting of the wurtzite-structured CdSe, the sphalerite-structured ZnTe, the sphalerite-structured CdSe, the sphalerite-structured CdTe, the sphalerite-structured HgSe, the sphalerite-structured HgTe, and combinations thereof. The present application also discloses a method for making the topological insulator structure.
    Type: Application
    Filed: August 4, 2020
    Publication date: November 19, 2020
    Applicant: Tsinghua University
    Inventors: KE HE, GAO-YUAN JIANG, QI-KUN XUE
  • Publication number: 20200365798
    Abstract: The present application discloses a double-channel topological insulator structure includes an insulating substrate, a first topological insulator quantum well film, an insulating interlayer, and a second topological insulator quantum well film. The first topological insulator quantum well film, the insulating interlayer, and the second topological insulator quantum well film are orderly stacked on a surface of the insulating substrate. The first and second topological insulator quantum well films are separated by the insulating interlayer. The present application also discloses a method for making the double-channel topological insulator structure and a method for generating quantum spin Hall effect.
    Type: Application
    Filed: August 4, 2020
    Publication date: November 19, 2020
    Applicant: Tsinghua University
    Inventors: KE HE, GAO-YUAN JIANG, QI-KUN XUE