Abstract: Disclosed is a quartz glass product of enhanced opacity manufactured by fusion of silica particles, the opacity being enhanced by the reaction of an organosilicon additive in the course of the fusion process. A method of enhancing the opacity of a quart glass product by fusing silica particles in the presence of an organosilicon additive is also disclosed.
Abstract: A linear burner for the synthesis of silica by vapor-phase reaction of a silicon-containing feedstock in a flame comprises at least five slots opening to an exit face (52a) of the burner and extending side-by-side in the elongate direction of the linear burner, and includes means (P1-P10) to supply a separate gas flow to each of said slots. An assembly of separator plates (52) is disposed between opposed casing parts (50, 51), which assembly defines the slots. At least one of the casing parts (50, 51) defines at least part of a respective plenum chamber (54) for each gas flow, each plenum chamber (54) communicating with a different one of said slots in the separator assembly. The invention also extends to a method of operating such a linear burner.
Type:
Grant
Filed:
December 5, 1995
Date of Patent:
April 7, 1998
Assignee:
TSL Group PLC
Inventors:
Ian George Sayce, Robert Nicholson, Paul Willikam Turnbull, Peter John Wells
Abstract: An induction-heated furnace, suitable for heat treatment of synthetic silica bodies, under conditions of high purity, includes a tubular susceptor (1) disposed with its axis vertical and an induction coil (3) for raising the temperature of the susceptor. The susceptor is made from graphite and/or silicon carbide, and is enclosed within a vacuum envelope (2) made from vitreous silica or fused quartz, the envelope being surrounded by the induction coil which is liquid-cooled. The design is such that the vacuum envelope (2) operates at temperatures below those at which either devitrification or sagging of the envelope might occur even when the tubular susceptor (1) is heated to a temperature of 1700.degree. C. Thus sintering of a porous synthetic silica body (9) can be carried out under atmospheric or reduced pressure, the furnace including a shaft (7) adapted to support the body to be heated and capable of rotation about and movement along said vertical axis of the tubular susceptor (1).
Type:
Grant
Filed:
November 10, 1994
Date of Patent:
February 3, 1998
Assignee:
TSL Group PLC
Inventors:
Robert Nicholson, Bernard Phillipe Robert Poullain, Ian George Sayce
Abstract: The method of enhancing purity of a fused quartz body having opposed boundary surfaces, includes the steps of maintaining the body at a temperature above 1000.degree. C. and at the same time applying a polarizing potential across the boundary surfaces by electrodes in contact with the boundary surfaces so that at least some of the residual impurity ions in it are made to migrate away from one of the boundary surfaces towards the opposite one of the boundary surfaces thereof and are subsequently discharged at the opposite boundary surface. To avoid surface contamination or deformation each of the electrodes is a gaseous electrode of an at least partially ionized helium, argon, neon, krypton, xenon, nitrogen or hydrogen gas or a flame produced by combustion of hydrogen, methane, propane, butane or acetylene. The temperature during the maintaining step is advantageously from 1500.degree. C. to 2100.degree. C.
Type:
Grant
Filed:
January 3, 1991
Date of Patent:
March 17, 1992
Assignee:
TSL Group PLC
Inventors:
Joseph I. H. Allen, Ian G. Sayce, John A. Winterburn
Abstract: An improved quality vitreous silica boby and/or improved quality product made at high temperature in a vitreous silica vessel is/are obtained by applying a polarizing potential across the boundary surfaces of the vitreous silica body or vessel to cause migration of impurity ions away from one of the boundary surfaces thereof. Single crystal silicon (10) of reduced alkali content is drawn from melt (12) in a vitreous silica crucible (14) with a polarizing voltage applied across the wall of the crucible.