Patents Assigned to TSUBOTA LABORATORY, INC.
-
Publication number: 20210308481Abstract: To provide a brain wave and cell activity control device and method based on light stimulation in which light having a specific wavelength, such as violet light, is irradiated using continuous light or a specific blinking frequency, and a device for improvement, prevention, or increase in brain function. The above-described problem is solved by a brain wave and cell activity control device, based on light stimulation, that controls brain waves or cell activity by irradiating light having a specific wavelength onto a subject using continuous light or a specific blinking frequency.Type: ApplicationFiled: August 1, 2019Publication date: October 7, 2021Applicant: TSUBOTA LABORATORY, INC.Inventors: Motoshi HAYANO, Kazuo TSUBOTA
-
Publication number: 20210228901Abstract: A light source for myopia prevention article includes a light emitter to emit light having an emission spectrum continuing from a first wavelength of not less than 360 nm nor more than 400 nm to a second wavelength of more than 400 nm.Type: ApplicationFiled: April 16, 2021Publication date: July 29, 2021Applicants: TOSHIBA MATERIALS CO., LTD., TSUBOTA LABORATORY, INC.Inventors: Masahiko YAMAKAWA, Hidemasa TORII, Toshihide KURIHARA, Kazuo TSUBOTA
-
Patent number: 11007375Abstract: A light source for myopia prevention article includes a light emitter to emit light having an emission spectrum continuing from a first wavelength of not less than 360 nm nor more than 400 nm to a second wavelength of more than 400 nm.Type: GrantFiled: July 25, 2018Date of Patent: May 18, 2021Assignees: Toshiba Materials Co., Ltd., Tsubota Laboratory, Inc.Inventors: Masahiko Yamakawa, Hidemasa Torii, Toshihide Kurihara, Kazuo Tsubota
-
Publication number: 20210023384Abstract: To provide a device and a method for strengthening a cornea or a sclera or suppressing a progression of a disease in a non-invasive manner, enabling treatment in daily life without treatment in a confined state at a medical institution for a fixed period of time and without ablation of the corneal epithelium as in conventional corneal crosslinking. The above-described problem is solved by a non-invasive cornea and sclera strengthening device that irradiates violet light toward an eye administered with an administration agent used to strengthen a corneal tissue or a scleral tissue, and is configured so that an irradiance of the violet light onto a surface of the eye is within a range of 0.1 to 1 mW/cm2, and a time of irradiation of the violet light onto the eye is within a range of one to five hours per day.Type: ApplicationFiled: March 19, 2019Publication date: January 28, 2021Applicant: TSUBOTA LABORATORY, INC.Inventors: Hidenaga KOBASHI, Kazuo TSUBOTA
-
Patent number: 10865134Abstract: A wavelength-selective transmissive glass has a light transmittance Tmore than 315 nm and 400 nm or less at a wavelength of more than 315 nm and 400 nm or less represented by the formula shown below of 1% or more in terms of a plate thickness of 6 mm and a light transmittance T315 nm or less at a wavelength of 315 nm or less represented by the formula shown below of 60% or less in terms of a plate thickness of 6 mm. Ak is a weighting factor at a wavelength k (nm) for calculating T (light transmittance) defined in ISO-9050:2003, and Tk is a transmittance at the wavelength k (nm) in terms of a plate thickness of 6 mm: Tmore than 315 nm and 400 nm or less=(?k=more than 315400Ak×Tk)/(?k=more than 315400Ak) T315 nm or less=(?k=300315Ak×Tk)/(?k=300315Ak).Type: GrantFiled: June 1, 2018Date of Patent: December 15, 2020Assignees: AGC Inc., TSUBOTA LABORATORY, INC.Inventors: Kensuke Nagai, Tetsuya Nakashima, Yutaka Kuroiwa, Hiroyuki Hijiya, Masamichi Tanida, Akio Koike, Manabu Nishizawa, Kazuo Tsubota, Toshihide Kurihara, Hidemasa Torii
-
Patent number: 10866433Abstract: An optical element has a transmission spectrum characterized in that a local maximum falls within a wavelength region longer than 315 nm but shorter than or equal to 400 nm, a local minimum falls within a wavelength region longer than or equal to 380 nm but shorter than or equal to 500 nm, and the wavelength at the local maximum is shorter than the wavelength at the local minimum.Type: GrantFiled: November 25, 2015Date of Patent: December 15, 2020Assignees: JINS HOLDINGS Inc., Tsubota Laboratory, Inc.Inventors: Shunsuke Shioya, Kazuo Tsubota, Toshihide Kurihara, Hidemasa Torii
-
Patent number: 10823982Abstract: The purpose of the present invention is to provide a myopia treatment device. A myopia treatment device of the present invention comprises a light transmission part selected from a group consisting of an eyesight correcting tool, an eye protection tool, a face protection tool, a sunshade, a display device, a window, a wall, a light source covering, and a coating material. The light transmission part of the device transmits violet light having a wavelength within a range of 360 nm to 400 nm inclusive and thus treats myopia. Or, the myopia treatment device comprises a light emission part selected from a group consisting of lighting equipment, a display device, and a light irradiation device. The light emission part of the device emits violet light having a wavelength within a range of 360 nm to 400 nm inclusive and thus treats myopia.Type: GrantFiled: October 9, 2018Date of Patent: November 3, 2020Assignee: TSUBOTA LABORATORY, INC.Inventors: Kazuo Tsubota, Kazuno Negishi, Hidemasa Torii, Toshihide Kurihara
-
Publication number: 20200229973Abstract: To provide a spraying device and a spraying method for moisture mist that supply at least a micro liquid to the eye, and can be used for dry eye symptom relief, drug delivery, allergy prevention, relaxation, and the like. The above-described problem is solved by a spraying device (1, 31) that supplies at least a micro liquid, and includes a spraying element (16) that sprays a mist-like substance containing the micro liquid onto a local region (50). The raw material is a liquid raw material or a solid raw material that may include a medicinal additive. The medicinal additive is preferably selected from among menthol, analgesics, antibiotics, antiallergic agents, steroids, intraocular pressure-lowering agents, and the like. The spraying device (1, 31) may be an eyeglasses-type spraying device (1) in which the local region (50) is configured by a rim (3) and a temple (6) of eyeglasses, or a cup-type spraying device (31) in which the local region (50) includes an opening (32).Type: ApplicationFiled: November 27, 2019Publication date: July 23, 2020Applicant: TSUBOTA LABORATORY, INC.Inventor: Kazuo TSUBOTA
-
Patent number: 10660182Abstract: To provide a display system such as a smartphone, a game console, a personal computer, or a liquid crystal television, including a light-emitting element that irradiates light having a specific wavelength toward a user. The above-described problem is solved by a display system (1) including a first light-emitting element (6) that emits light used for image display, a second light-emitting element (3) that irradiates light (7) within a wavelength range of 360 nm to 400 nm, inclusive, toward a user, and a control unit (10) that controls irradiation of the light (7) from the second light-emitting element (3).At this time, the second light-emitting element (3) may be a single light-emitting element integrated with the first light-emitting element (6) or a light-emitting element provided separately from the first light-emitting element (6).Type: GrantFiled: December 26, 2017Date of Patent: May 19, 2020Assignee: TSUBOTA LABORATORY, INC.Inventor: Kazuo Tsubota
-
Publication number: 20200150457Abstract: A model that closely resembles human excessive myopia can be prepared by mounting a minus lens (2) and a protector (4) to a juvenile mouse, the minus lens having an angle and a width adjustable in response to growth of the mouse. Further, this model analysis shows that myopia induction causes endoplasmic reticulum stress in a sclera and the endoplasmic reticulum stress induces myopia. Furthermore, it is revealed that an endoplasmic reticulum stress suppressant, particularly, phenylbutyrate and tauroursodeoxycholic acid act as a myopia prevention/suppression agent.Type: ApplicationFiled: September 5, 2019Publication date: May 14, 2020Applicant: TSUBOTA LABORATORY, INC.Inventors: Shinichi IKEDA, Xiaoyan JIANG, Kazuo TSUBOTA, Toshihide KURIHARA
-
Publication number: 20200092971Abstract: To provide a display system such as a smartphone, a game console, a personal computer, or a liquid crystal television, including a light-emitting element that irradiates light having a specific wavelength toward a user. The above-described problem is solved by a display system (1) including a first light-emitting element (6) that emits light used for image display, a second light-emitting element (3) that irradiates light (7) within a wavelength range of 360 nm to 400 nm, inclusive, toward a user, and a control unit (10) that controls irradiation of the light (7) from the second light-emitting element (3). At this time, the second light-emitting element (3) may be a single light-emitting element integrated with the first light-emitting element (6) or a light-emitting element provided separately from the first light-emitting element (6).Type: ApplicationFiled: December 26, 2017Publication date: March 19, 2020Applicant: TSUBOTA LABORATORY, INC.Inventor: Kazuo TSUBOTA
-
Publication number: 20190129204Abstract: The purpose of the present invention is to provide a myopia treatment device. A myopia treatment device of the present invention comprises a light transmission part selected from a group consisting of an eyesight correcting tool, an eye protection tool, a face protection tool, a sunshade, a display device, a window, a wall, a light source covering, and a coating material. The light transmission part of the device transmits violet light having a wavelength within a range of 360 nm to 400 nm inclusive and thus treats myopia. Or, the myopia treatment device comprises a light emission part selected from a group consisting of lighting equipment, a display device, and a light irradiation device. The light emission part of the device emits violet light having a wavelength within a range of 360 nm to 400 nm inclusive and thus treats myopia.Type: ApplicationFiled: October 9, 2018Publication date: May 2, 2019Applicant: TSUBOTA LABORATORY, INC.Inventors: Kazuo Tsubota, Kazuno Negishi, Hidemasa Torii, Toshihide Kurihara
-
Publication number: 20190121165Abstract: To provide a translucent member that has the effect of lowering triglycerides, increasing IRS-2, and the like. The above-described problem is solved by a translucent member (1) that blocks or suppresses transmission of at least light that is received by an eye and has a wavelength of 460 nm. The translucent member (1) may be an eyeglass lens or eyeglasses as a whole. The eyeglasses (1) preferably comprise a lens (2) that blocks or suppresses transmission of at least light having a wavelength of 460 nm, and a rim (3) that blocks or suppresses transmission of at least light having a wavelength of 460 nm. The rim (3) preferably comprise a projecting portion (3a) for decreasing a gap between the rim (3) and a face of an eyeglass wearer or eliminating the gap by coming into contact with the face.Type: ApplicationFiled: April 7, 2017Publication date: April 25, 2019Applicant: TSUBOTA LABORATORY, INC.Inventors: Kazuo TSUBOTA, Masahiko AYAKI
-
Publication number: 20180351050Abstract: A light source for myopia prevention article includes a light emitter to emit light having an emission spectrum continuing from a first wavelength of not less than 360 nm nor more than 400 nm to a second wavelength of more than 400 nm.Type: ApplicationFiled: July 25, 2018Publication date: December 6, 2018Applicants: TOSHIBA MATERIALS CO., LTD., TSUBOTA LABORATORY, INC.Inventors: Masahiko Yamakawa, Hidemasa Torii, Toshihide Kurihara, Kazuo Tsubota
-
Publication number: 20180341122Abstract: An optical element has a transmission spectrum characterized in that a local maximum falls within a wavelength region longer than 315 nm but shorter than or equal to 400 nm, a local minimum falls within a wavelength region longer than or equal to 380 nm but shorter than or equal to 500 nm, and the wavelength at the local maximum is shorter than the wavelength at the local minimum.Type: ApplicationFiled: November 25, 2015Publication date: November 29, 2018Applicants: JINS INC., Tsubota Laboratory, Inc.Inventors: Shunsuke Shioya, Kazuo Tsubota, Toshihide Kurihara, Hidemasa Toril
-
Patent number: 10133092Abstract: The purpose of the present invention is to provide a myopia prevention device. A myopia prevention device of the present invention comprises a light transmission part selected from a group consisting of an eyesight correcting tool, an eye protection tool, a face protection tool, a sunshade, a display device, a window, a wall, a light source covering, and a coating material. The light transmission part of the device transmits light having a wavelength within a range of 350 nm to 400 nm inclusive and thus suppresses the occurrence and progression of myopia. Further, a myopia prevention device comprises a light emission part selected from a group consisting of lighting equipment, a display device, and a light irradiation device. The light emission part of the device emits light having a wavelength within a range of 350 nm to 400 nm inclusive and thus suppresses the occurrence and progression of myopia.Type: GrantFiled: December 1, 2016Date of Patent: November 20, 2018Assignee: TSUBOTA LABORATORY, INC.Inventors: Kazuo Tsubota, Kazuno Negishi, Hidemasa Torii, Toshihide Kurihara
-
Publication number: 20180297888Abstract: A wavelength-selective transmissive glass has a light transmittance Tmore than 315 nm and 400 nm or less at a wavelength of more than 315 nm and 400 nm or less represented by the formula shown below of 1% or more in terms of a plate thickness of 6 mm and a light transmittance T315 nm or less at a wavelength of 315 nm or less represented by the formula shown below of 60% or less in terms of a plate thickness of 6 mm. Ak is a weighting factor at a wavelength k (nm) for calculating T (light transmittance) defined in ISO-9050:2003, and Tk is a transmittance at the wavelength k (nm) in terms of a plate thickness of 6 mm: Tmore than 315 nm and 400 nm or less=(?k=more than 315400 Ak×Tk)/(?k=more than 315400 Ak) T315 nm or less=(?k=300315 Ak×Tk)/(?k=300315 Ak).Type: ApplicationFiled: June 1, 2018Publication date: October 18, 2018Applicants: ASAHI GLASS COMPANY, LIMITED, TSUBOTA LABORATORY, INC.Inventors: Kensuke NAGAI, Tetsuya NAKASHIMA, Yutaka KUROIWA, Hiroyuki HIJIYA, Masamichi TANIDA, AKIO KOIKE, Manabu NISHIZAWA, Kazuo TSUBOTA, Toshihide KURIHARA, Hidemasa TORII
-
Publication number: 20180280718Abstract: To provide an irradiation device capable of preventing myopia or slowing the progression of myopia by the action of light irradiated toward the eyeball. An irradiation device (10) comprises a light source (1) and an instrument (2) on which the light source (1) is mounted. The light source (1) emits at least light having a wavelength within a range of 350 to 400 nm, inclusive, and is disposed in a position that allows irradiation in an eyeball direction when the instrument (2) is mounted. Further, the light source (1) is disposed in a position 0 to 100 mm, inclusive, from a surface of the eyeball. At this time, an irradiance of the light having a wavelength within the range of 350 to 400 nm, inclusive, is 0.02 to 1.0 W/m2, inclusive, on the eyeball surface when the instrument (2) is worn.Type: ApplicationFiled: June 4, 2018Publication date: October 4, 2018Applicant: TSUBOTA LABORATORY, INC.Inventors: Kazuo TSUBOTA, Kazuno Negishi, Hidemasa Torii, Toshihide Kurihara
-
Publication number: 20180273424Abstract: A wavelength-selective transmissive glass article has light transmittance Tmore than 315 nm and 400 nm or less at a wavelength of more than 315 nm and 400 nm or less of 1% or more. In addition, the wavelength-selective transmissive glass article has light transmittance T315 nm or less at a wavelength of 315 nm or less of 60% or less.Type: ApplicationFiled: May 30, 2018Publication date: September 27, 2018Applicants: ASAHI GLASS COMPANY, LIMITED, TSUBOTA LABORATORY, INC.Inventors: Hideyuki Hirakoso, Takahiro Mashimo, Kensuke Nagai, Kazuo Tsubota, Toshihide Kurihara, Hidemasa Torii
-
Patent number: D958065Type: GrantFiled: December 10, 2020Date of Patent: July 19, 2022Assignees: Jins Holdings Inc., Tsubota Laboratory, Inc.Inventor: Daisuke Kaneda