Patents Assigned to Tsuyoshi Masumoto
  • Patent number: 5449419
    Abstract: An Fe-based soft magnetic alloy having a high saturated magnetic flux density and having a composition represented by formula (I) below:(Fe.sub.1-a Q.sub.a).sub.b B.sub.x T.sub.y T'.sub.z (I)wherein Q represents at least one element selected from the group consisting of Co and Ni; T represents at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mo and W, with Zr and/or Hf being always included; T' represents at least one element selected from the group consisting of Cu, Ag, Au, Ni, Pd and Pt; a, b, x, y and z are real numbers satisfying relationships below:0.ltoreq.a.ltoreq.0.05 atomic %,0<b.ltoreq.93 atomic %,0.5.ltoreq.x.ltoreq.16 atomic %,4.ltoreq.y.ltoreq.10 atomic %,0.ltoreq.z.ltoreq.4.5 atomic %provided that when 0<z.ltoreq.4.5 atomic %, Q represents Co and 0<b.ltoreq.92 atomic %; and when z=0, 0.5.ltoreq.x.ltoreq.8 atomic % and 4.ltoreq.y.ltoreq.9 atomic %.
    Type: Grant
    Filed: February 24, 1994
    Date of Patent: September 12, 1995
    Assignees: Alps Electric Co., Ltd., Tsuyoshi Masumoto
    Inventors: Kiyonori Suzuki, Akihiro Makino, Tsuyoshi Masumoto, Akihisa Inoue, Noriyuki Kataoka
  • Patent number: 5436080
    Abstract: A structural member is produced using starting powder consisting of composite particulates each containing AlN grain within its surface covered by an Al layer of a single crystal structure, and Al alloy particulates of a single crystal structure, and then by sintering the Al layers of the composite particulates with the Al alloy particulates. The Al layers and the Al alloy particulates of the single crystal structure have no dislocation fault, crystal grain boundary. etc., produced therein, and for this reason, they have a low chemical activity. Therefore, the Al layers and the like have a characteristic that they are extremely difficult to oxidize. This ensures that the Al layers and the Al alloy particulates can be reliably sintered to achieve the densification of the resulting structural member.
    Type: Grant
    Filed: September 10, 1992
    Date of Patent: July 25, 1995
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Yoshida Kogyo K.K., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Akihisa Inoue, Tsuyoshi Masumoto, Jun Sasahara, Katsutoshi Nosaki, Tadashi Yamaguchi
  • Patent number: 5423923
    Abstract: Deposition of a hard film of Ti-Si-N composite material on a substrate is carried out by using a source of evaporation possessing a composition of Ti.sub.a Si.sub.b (wherein "a" and "b" stand for atomic percentages respectively falling in the ranges of 75 at % .ltoreq.a.ltoreq.85 at % and 15 at %.ltoreq.b.ltoreq.25 at %, providing a+b=100 at %). Deposition is effected by a sputtering process or ion plating process in an atmosphere of an inert gas containing a nitrogen-containing reaction gas while controlling the feed rate of the reaction gas into a chamber in such a manner that the partial pressure of nitrogen is kept constant or varied continuously or stepwise. By this method there can be obtained a film having fine TiN crystalline particles uniformly dispersed in the matrix phase of Ti-Si amorphous metal or a film of functionally gradient structure in which the ratio of fine TiN crystalline particles dispersed in the matrix phase increases continuously or stepwise in the direction of thickness of the film.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: June 13, 1995
    Assignees: Yoshida Kogyo K.K., Tsuyoshi Masumoto, Akihisa Inoue, Honda Motor Co., Ltd.
    Inventors: Hiroshi Yamagata, Tadashi Yamaguchi, Hideki Takeda, Nobuyuki Nishiyama, Katsutoshi Nozaki, Akihisa Inoue, Tsuyoshi Masumoto
  • Patent number: 5405458
    Abstract: Deposition of a hard film of Ti--Si--N composite material on a substrate is carried out by using a source of evaporation possessing a composition of Ti.sub.a Si.sub.b (wherein "a" and "b" stand for atomic percentages respectively falling in the ranges of 75 at %.ltoreq.a.ltoreq.85 at % and 15 at %.ltoreq.b.ltoreq.25 at %, providing a+b=100 at %). Deposition is effected by a sputtering process or ion plating process in an atmosphere of an inert gas containing a nitrogen-containing reaction gas while controlling the feed rate of the reaction gas into a chamber in such a manner that the partial pressure of nitrogen is kept constant or varied continuously or stepwise.
    Type: Grant
    Filed: September 14, 1993
    Date of Patent: April 11, 1995
    Assignees: Yoshida Kogyo K.K., Tsuyoshi Masumoto, Akihisa Inoue, Honda Motor Co., Ltd., Teikoko Piston Ring Co., Ltd.
    Inventors: Hiroshi Yamagata, Tadashi Yamaguchi, Hideki Takeda, Nobuyuki Nishiyama, Katsutoshi Nozaki, Akihisa Inoue, Tsuyoshi Masumoto
  • Patent number: 5405462
    Abstract: A superplastic aluminum-based alloy material consisting of a matrix formed of aluminum or a supersaturated aluminum solid solution, whose average crystal grain size is 0.005 to 1 .mu.m, and particles made of a stable or metastable phase of various intermetallic compounds formed of the main alloying element (i.e., the matrix element) and the other alloying elements and/or of various intermetallic compounds formed of the other alloying elements and distributed evenly in the matrix, the particles having a mean particle size of 0.001 to 0.1 .mu.m. The superplastic aluminum-based alloy material is produced from a rapidly solidified material consisting of an amorphous phase, a microcrystalline phase or a mixed phase thereof by optionally heat treating at a prescribed temperature for a prescribed period of time and then subjecting to a single or combined thermo-mechanical treatment. The superplastic aluminum-based alloy material of the present invention is suited for to superplastic working.
    Type: Grant
    Filed: February 23, 1994
    Date of Patent: April 11, 1995
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Kenji Higashi, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Kenji Higashi, Katsumasa Ohtera, Makoto Kawanishi
  • Patent number: 5397490
    Abstract: A magnetic material consisting essentially of A1 and 10 to 50 at. % of at least one capable of alloying with A1 to form quasicrystals (for example, 5 to 25 at. % of at least one member selected between Cu and Pd and 5 to 35 at. % of Mn) and up to 25 at. % of at least one element having a smaller atomic radius than those of the above elements (for example, B). The magnetic material is produced by adding, to a mixture consisting of A1 and at least one element capable of alloying with A1 to form quasicrystals and including at least one transition metal, at least one element having a smaller atomic radius than those of A1 and the above elements to dissolve the element having a smaller atomic radius in a solid solution form in a quasicrystalline phase. The thus obtained magnetic crystal is useful in various applications, such as magnetic recording heads, and a process for producing the same.
    Type: Grant
    Filed: July 26, 1993
    Date of Patent: March 14, 1995
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Junichi Nagahora
  • Patent number: 5368658
    Abstract: The present invention provides high strength, heat resistant aluminum-based alloys having a composition represented by the general formula: Al.sub.a M.sub.b X.sub.cwherein:M is at least one metal element selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Ti, Mo, W, Ca, Li, Mg and Si;X is at least one metal element selected from the group consisting of Hf, Nb, and Ta; anda, b and c are atomic percentages falling within the following ranges:50.ltoreq.a.ltoreq.95, 0.5.ltoreq.b.ltoreq.35 and 0.5.ltoreq.c.ltoreq.25, the aluminum-based alloy being in an amorphous state, microcrystalline state or a composite state thereof. The aluminum-based alloys possess an advantageous combination of properties of high strength, heat resistance, superior ductility and good processability which make then suitable for various applications.
    Type: Grant
    Filed: February 19, 1993
    Date of Patent: November 29, 1994
    Assignees: Yoshida Kogyo K.K., Tsuyoshi Masumoto
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Katsumasa Odera, Masahiro Oguchi
  • Patent number: 5350468
    Abstract: A process for producing amorphous alloy materials having high toughness and high strength from various alloy powders, thin ribbons or bulk materials consisting of an amorphous phase by heating them to a temperature at which intermetallic compounds or other compounds are not produced. During this heating, fine crystal grains consisting of a supersaturated solid solution made of a main alloying element and additive elements and having a mean grain diameter of 5 nm to 500 nm are precipitated and uniformly dispersed in a volume percentage of 5 to 50% throughout an amorphous matrix. In the process, when deformation, pressing or other working is simultaneously conducted with the heating, consolidation or combining of the resultant alloy materials can also be effected in the same production procedure. The amorphous alloy used in the production process preferably comprises Al, Mg or Ti as a main element and, as additive elements, rare earth elements and/or other elements.
    Type: Grant
    Filed: September 2, 1992
    Date of Patent: September 27, 1994
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue
  • Patent number: 5348591
    Abstract: An amorphous magnesium alloy has a composition of Mg.sub.a M.sub.b X.sub.c (M is Zn and/or Ga, X is La, Ce, Mm (misch metal), Y, Nd, Pr, Sm and Gd), a is from 65 to 96.5 atomic %, b is from 3 to 30 atomic %, and c is from 0.2 to 8 atomic %). The magnesium alloy has a high specific strength and does not embrittle at room temperature.
    Type: Grant
    Filed: September 2, 1992
    Date of Patent: September 20, 1994
    Assignees: Tsuyoshi Masumoto, Toyota Jidosha Kabushiki Kaisha, Yoshida Kogyo K.K., Teikoku Piston Ring Co., Ltd.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Akira Kato, Toshisuke Shibata, Nobuyuki Nishiyama
  • Patent number: 5344507
    Abstract: An aluminum-alloy, which is wear-resistant and does not wear greatly the opposed cast iron or steel, and which can be warm worked. The alloyings the following composition and structure. Composition: Al.sub.a Si.sub.b M.sub.c X.sub.d T.sub.e (where M is at least one element selected from the group consisting of Fe, Co and. Ni; X is at least one element selected from the group consisting of Y, Ce, La and Mm (misch metal); Y is at least one element selected from the group consisting of Mn, Cr, V, Ti, Mo, Zr, W, Ta and Hf; a=50-85 atomic %, b=10-49 atomic %, c=0.5-10 atomic %, d=0.5-10 atomic %, e=0-10 atomic %, and a+b+c+d+e=100 atomic %. Structure: super-saturated face-centered cubic crystals and fine Si precipitates.
    Type: Grant
    Filed: March 16, 1992
    Date of Patent: September 6, 1994
    Assignees: Tsuyoshi Masumoto, Yoshida Kogyo KK, Teikoku Piston Ring Co., Ltd.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Kazuhiko Kita, Hitoshi Yamaguchi
  • Patent number: 5340416
    Abstract: A high-strength magnesium-based alloy possessing a microcrystalline composition represented by the general formula: Mg.sub.a Al.sub.b M.sub.c or Mg.sub.a,Al.sub.b M.sub.c X.sub.d (wherein M stands for at least one element selected from the group consisting of Ga, Sr, and Ba, X stands for at least one element selected from the group consisting of Zn, Ce, Zr, and Ca, and a, a', b, c, and d stand for atomic percents respectively in the ranges of 78.ltoreq.a.ltoreq.94, 75.ltoreq.a'.ltoreq.94, 2.ltoreq.b.ltoreq.12, 1.ltoreq.c.ltoreq.10, and 0.1.ltoreq.d.ltoreq.3). This alloy can be advantageously produced by rapidly solidifying the melt of an alloy of the composition shown above by the liquid quenching method. It is useful as high-strength materials and highly refractory materials owing to its high hardness, strength, and heat-resistance. It is also useful as materials with high specific strength because of light weight and high strength.
    Type: Grant
    Filed: December 28, 1992
    Date of Patent: August 23, 1994
    Assignees: Tsuyoshi Masumoto, Yoshida Kogyo K.K., Akihisa Inoue
    Inventors: Toshisuke Shibata, Akihisa Inoue, Tsuyoshi Masumoto
  • Patent number: 5332456
    Abstract: A superplastic aluminum-based alloy material consisting of a matrix formed of aluminum or a supersaturated aluminum solid solution, whose average crystal grain size is 0.005 to 1 .mu.m, and particles made of a stable or metastable phase of various intermetallic compounds formed of the main alloying element (i.e., the matrix element) and the other alloying elements and/or of various intermetallic compounds formed of the other alloying elements and distributed evenly in the matrix, the particles having a mean particle size of 0.001 to 0.1 .mu.m. The superplastic aluminum-based alloy material is produced from a rapidly solidified material consisting of an amorphous phase, a microcrystalline phase or a mixed phase thereof by optionally heat treating the material at a prescribed temperature for a prescribed period of time and then subjecting it to a single or combined thermomechanical treatment. The superplastic aluminum-based alloy material of the present invention is suited for superplastic working.
    Type: Grant
    Filed: September 25, 1992
    Date of Patent: July 26, 1994
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Kenji Higashi, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Kenji Higashi, Katsumasa Ohtera, Makoto Kawanishi
  • Patent number: 5324368
    Abstract: Disclosed herein is a process for forming an amorphous alloy material capable of showing glass transition, which comprises holding the material between frames arranged in combination; and heating the material at a temperature between its glass transition temperature (Tg) and its crystallization temperature (Tx) and, at the same time, producing a pressure difference between opposite sides of the material, whereby the material is brought into close contact against a forming mold disposed on one side of the material. As an alternative, the forming mold is brought into close contact against the amorphous material in a direction opposite to the pressing direction for the amorphous material. By the above processes, precision-formed products of amorphous alloys can be manufactured and supplied at low cost.
    Type: Grant
    Filed: May 19, 1992
    Date of Patent: June 28, 1994
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Nobuyuki Nishiyama, Hiroyuki Horimura, Toshisuke Shibata
  • Patent number: 5320688
    Abstract: The present invention provides high strength, heat resistant aluminum-based alloys having a composition represented by the general formula:Al.sub.a M.sub.b X.sub.cwherein:M is at least one metal element selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Ti, Mo, W, Ca, Li, Mg and Si;X is at least one metal element selected from the group consisting of Y, La, Ce, Sm, Nd, Hf, Nb, Ta and Mm (misch metal); anda, b and c are atomic percentages falling within the following ranges:50.ltoreq.a.ltoreq.95, 0.5.ltoreq.b.ltoreq.35 and 0.5.ltoreq.c.ltoreq.25,the aluminum-based alloy being in an amorphous state, microcrystalline state or a composite state thereof. The aluminum-based alloys possess an advantageous combination of properties of high strength, heat resistance, superior ductility and good processability which make then suitable for various applications.
    Type: Grant
    Filed: February 19, 1993
    Date of Patent: June 14, 1994
    Assignees: Yoshida Kogyo K. K., Tsuyoshi Masumoto
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Katsumasa Odera, Masahiro Oguchi
  • Patent number: 5318641
    Abstract: Al.sub.100-a-b-c X.sub.a M.sub.b T.sub.c, in which X is Y (yttrium) and/or rare-earth element(s), M is Fe, Co, and/or Ni, and T is Mn, Mo, Cr, Zr and/or V, and, a=0.5-5 atomic %, b=5-15 atomic %, and c=0.2-3.0 atomic %, and, further, X and M fall on and within the hatched region range of the appended FIG. 1, has a complex, amorphous-crystalline structure with an amorphous matrix containing the Al, X, M and T, and minority crystalline phase consisting of aluminum-alloy particles containing super-saturated X, M and T as solutes. The alloy has a high strength due to the dispersed crystalline particles.
    Type: Grant
    Filed: June 6, 1991
    Date of Patent: June 7, 1994
    Assignees: Tsuyoshi Masumoto, Teikoku Piston Ring Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Kazuhiko Kita, Hitoshi Yamaguchi, Hiroyuki Horimura, Noriaki Matsumoto
  • Patent number: 5312495
    Abstract: The present invention provides a process comprising the steps of forming a cast amorphous alloy from an alloy which exhibits glass transition behavior, heating the amorphous alloy to a temperature between Tg and Tx while subjecting the alloy to drawing to obtain a wire and cooling the wire to (Tg-50 K) or lower. By this process, it is possible to produce an amorphous alloy wire at a low cost and provide an ultrafine wire having high strength and high corrosion resistance as well as flexibility. The amorphous alloy wire can be utilized as a reinforcing wire for a composite material, a variety of reinforcing members, a woven fabric and the like.
    Type: Grant
    Filed: May 5, 1992
    Date of Patent: May 17, 1994
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Unitika Ltd., Kogyo K.K. Yoshida
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Hirokazu Yamamoto, Junichi Nagahora, Toshisuke Shibata
  • Patent number: 5306363
    Abstract: An aluminum-based alloy foil or thin aluminum-based alloy wire is produced from an amorphous material made by a quenching and solidifying process and having a composition represented by the general formula:Al.sub.a M.sub.b X.sub.cwherein M is one or more elements selected from a group consisting of V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Ti, Mo, W, Ca, Li, Mg and Si; X is one or more elements selected from a group consisting of Y, Nb, Hf, Ta, La, Ce, Sm, Nd and Mm (misch metal); and a, b, and c are atomic percentages falling within the following range:50.ltoreq.a.ltoreq.950.5.ltoreq.b.ltoreq.35 and0.5.ltoreq.c.ltoreq.25Such foil or wire has a smooth surface and a very small and uniform foil thickness or wire diameter, contains at least 50% by volume of an amorphous phase, and has excellent strength and resistance to corrosion. The foil thickness and wire diameter are reduced in a rolling or drawing process at an elevated temperature over a short time period.
    Type: Grant
    Filed: August 20, 1990
    Date of Patent: April 26, 1994
    Assignees: Tsuyoshi Masumoto, Teikoku Piston Ring Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha, Kogyo K.K. Yoshida
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Hitoshi Yamaguchi, Noriaki Matsumoto, Kazuhiko Kita
  • Patent number: 5296059
    Abstract: A process for producing an amorphous alloy material characterized by imparting ductility to an amorphous alloy having a supercooled liquid region by giving a prescribed amount of strain at a prescribed strain rate to the alloy in the glass transition temperature region of the alloy. The amorphous alloy may be in the form of spherical or irregular-shaped powders or thin ribbons or in the form of primary consolidated shapes thereof or an amorphous alloy casting. The amount of strain and strain rate are preferably 50% or greater and 2.times.10.sup.-2 /sec or higher, respectively, and the worked amorphous alloy material is preferably allowed to cool in a furnace or spontaneously. Suitable examples of the amorphous alloy to be employed include Al-TM-Ln, Mg-TM-Ln, Zr-TM-Al and Hf-TM-Al alloys, wherein TM is a transition metal element and Ln is a rare earth metal element. The thus obtained amorphous alloy is greatly improved in the prevention of embrittlement in hot working peculiar to the alloy.
    Type: Grant
    Filed: September 11, 1992
    Date of Patent: March 22, 1994
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Junichi Nagahora, Kazuhiko Kita
  • Patent number: 5250124
    Abstract: A bulky amorphous magnesium alloy having heat-resistance and toughness is provided by setting the alloy composition as: Mg.sub.a M.sub.b Al.sub.c X.sub.d Z.sub.e (M is at least one element selected from the group consisting of La, Ce, Mm (misch metal) and Y, X is at least one element selected from the group consisting of Ni and Cu, and Z is at least one element selected from the group consisting of Mn, Zn, Zr, and Ti, and, a=70.about.90 at %, b=2.about.15 at %, c=1.about.9 at %, d=2.about.15 at %, e=0.1.about.8 at %, a+b+c+d+e=100 at %).
    Type: Grant
    Filed: March 16, 1992
    Date of Patent: October 5, 1993
    Assignees: Yoshida Kogyo K.K., Tsuyoshi Masumoto
    Inventors: Hitoshi Yamaguchi, Toshisuke Shibata, Akihisa Inoue, Akira Kato, Tsuyoshi Masumoto
  • Patent number: 5221376
    Abstract: Disclosed are high strength magnesium-based alloys consisting essentially of a composition represented by the general formula (I) Mg.sub.a M.sub.b X.sub.d, (II) Mg.sub.a Ln.sub.c X.sub.d or (III) Mg.sub.a M.sub.b Ln.sub.c X.sub.d, wherein M is at least one element selected from the group consisting of Ni, Cu, Al, Zn and Ca; Ln is at least one element selected from the group consisting of Y, La, Ce, Sm and Nd or a misch metal (Mm) which is a combination of rare earth elements; X is at least one element selected from the group consisting of Sr, Ba and Ga; and a, b, c and d are, in atomic percent, 55.ltoreq.a.ltoreq.95, 3.ltoreq.b.ltoreq.25, 1.ltoreq.c.ltoreq.15 and 0.5.ltoreq.d.ltoreq.30, the alloy being at least 50 percent by volume composed of an amorphous phase.
    Type: Grant
    Filed: January 14, 1992
    Date of Patent: June 22, 1993
    Assignees: Tsuyoshi Masumoto, Japan Metals & Chemicals Co., Ltd., Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Takashi Sakuma, Toshisuke Shibata