Patents Assigned to Tunable InfraRed Technologies AS
  • Patent number: 10739220
    Abstract: An optical pressure sensor, such as a microphone, is constituted by two membranes, but where the sound does not arrive perpendicular to the membrane, but comes in from the side. The membranes may be parallel as in a Fabry-Perot or slightly skew as in an Air-wedge shearing interferometer. The pressure sensor uses interferometric readout, and consists of two membranes with essentially equal characteristics, where at least one of the membranes is partially transmitting and partially reflective and the other membrane is at least partially reflective, the membranes being separated by a cavity defined by a spacer part, where the distance between the membranes is variable to provide a shift sensitive Fabry-Perot resonator, and where the two membranes have a common back volume being sealed or essentially sealed in the frequency one wish to measure, and where a pressure increase results in that the distance between the membranes move in opposite directions.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: August 11, 2020
    Assignee: Tunable InfraRed Technologies AS
    Inventor: Ib-Rune Johansen
  • Publication number: 20180321103
    Abstract: The invention relates to an optical pressure sensor, such as a microphone, being constituted by two membranes, but where the sound does not arrive perpendicular to the membrane, but comes in from the side. The membranes may be parallel as in a Fabry-Perot or slightly skew as in an Air-wedge shearing interferometer. The pressure sensor uses interferometric readout, and consists of two membranes with essentially equal characteristics, where at least one of the membranes is partially transmitting and partially reflective and the other membrane is at least partially reflective, the membranes being separated by a cavity defined by a spacer part, where the distance between the membranes is variable to provide a shift sensitive Fabry-Perot resonator, and where the two membranes have a common back volume being sealed or essentially sealed in the frequency one wish to measure, and where a pressure increase results in that the distance between the membranes move in opposite directions.
    Type: Application
    Filed: November 29, 2016
    Publication date: November 8, 2018
    Applicant: Tunable InfraRed Technologies AS
    Inventor: Ib-Rune JOHANSEN