Patents Assigned to Ubiquiti Networks
-
Publication number: 20140112311Abstract: One embodiment of the present invention provides a system for configuring an access point in a wireless network. During operation, the access point discovers one or more existing access points associated with the wireless network. The access point then obtains a set of configuration information from one existing access point, and synchronizes a local timestamp counter to a selected existing access point, thereby allowing the access point to be configured without using a centralized management station.Type: ApplicationFiled: December 9, 2013Publication date: April 24, 2014Applicant: Ubiquiti Networks, Inc.Inventors: Sriram Dayanandan, Bo-chieh Yang, Yuan-Hsiang Lee, Keh-Ming Luoh, Robert J. Pera
-
Patent number: 8698684Abstract: A device comprising a metallic conical portion, said conical portion substantially hollow having a vertex end and a base end, a first cylindrical portion disposed annularly about the base end of the conical portion, a metallic second cylindrical portion coupled to the vertex of the conical portion, said cylindrical portion having a threaded aperture, and an antenna feed coupled to the threaded aperture. The device may have a patch disposed on an insulator portion connected to the second cylindrical portion, said patch and insulator portion each having an aperture, and a metallic ground portion connected to the insulator portion, said ground portion having an ground aperture, and a threaded screw disposed through the ground aperture, the patch, the insulator aperture and into the threaded aperture. An RF feed may be created by coupling the threaded aperture to a conductive material disposed on the insulator portion.Type: GrantFiled: March 8, 2013Date of Patent: April 15, 2014Assignee: Ubiquiti NetworksInventor: John R. Sanford
-
Patent number: 8698687Abstract: A microwave system comprising a center fed parabolic reflector; a radio transceiver, said transceiver disposed on a circuit board and coupled to a radiator, said radiator disposed on the circuit board and extending orthogonally from a surface of the circuit board. Embodiments also include directors on the circuit board and a sub-reflector comprising a thin plate disposed on a weather proof cover and said sub-reflector having a substantially concave surface with a focus directed towards the radiator. The circuit board is physically integrated within the feed mechanism of the center fed parabolic reflector and the radio transceiver is configured to provide OSI layer support.Type: GrantFiled: March 2, 2013Date of Patent: April 15, 2014Assignee: Ubiquiti Networks, Inc.Inventors: Robert J. Pera, John R. Sanford
-
Publication number: 20140006506Abstract: A load-monitoring interfacing device obtains and processes sensor data from an electrical load. The interfacing device can include at least one power outlet to provide power to a corresponding electrical load. During operation, the interfacing device can obtain sensor data from a local power outlet coupled to an electrical load, such that the sensor data can indicate an electrical measurement associated with the electrical load. The interfacing device selects a rule to process based on the obtained sensor data, and processes the rule to determine whether to perform an action. If the rule's condition is satisfied, the interfacing device proceeds to processing the rule's action description to perform the action, such as to enable or disable a power outlet, or to perform any other pre-defined action.Type: ApplicationFiled: January 8, 2013Publication date: January 2, 2014Applicant: Ubiquiti Networks, Inc.Inventors: Randall W. Frei, Linker Cheng, Robert J. Pera
-
Publication number: 20140005810Abstract: A sensor-monitoring interfacing device is coupled to one or more physical devices that include sensors for measuring physical attributes. During operation, the interfacing device obtains and processes sensor data from the physical devices. When the interfacing device obtains sensor data from a physical device, the interfacing device selects a rule to process based on the obtained sensor data. If the interfacing device determines that the rule's condition is satisfied, the interfacing device can process the rule's action description to perform a corresponding action.Type: ApplicationFiled: January 8, 2013Publication date: January 2, 2014Applicant: Ubiquiti Networks, Inc.Inventors: Randall W. Frei, Linker Cheng, Robert J. Pera
-
Publication number: 20140005851Abstract: A load-controlling interfacing device obtains and processes event data, for example, from a touch-screen user interface and/or other devices, and that processes rules based on the event data to control an electrical load, such as a light fixture. During operation, when the interfacing device obtains event data, the interfacing device selects a rule to process based on the event data from the touch-screen user interface. If the interfacing device determines that the rule's condition is satisfied, the interfacing device can process the rule's action description to perform a corresponding action for controlling power to the electrical load.Type: ApplicationFiled: January 8, 2013Publication date: January 2, 2014Applicant: Ubiquiti Networks, Inc.Inventors: Randall W. Frei, Linker Cheng, Robert J. Pera
-
Patent number: 8493279Abstract: A microwave system comprises an antenna, antenna feed, a radio transceiver, and appropriate cabling among the aforementioned. Cost, performance and reliability improvements are achieved with further integration of these elements and with design improvements in the antenna feed. One improvement is the integration of the radio transceiver with the antenna feed. This improvement has many benefits including the to elimination of RF cables and connectors. Another improvement is the incorporation of parasitic radiators and sub-reflectors as part to of the antenna feed. The entire antenna, including the feed design is optimized with 3D finite element method (FEM) software and numerical optimization software. Another improvement is the utilization of the digital cable to power the integrated radio transceiver and a center fed parabolic reflector.Type: GrantFiled: June 4, 2009Date of Patent: July 23, 2013Assignee: Ubiquiti Networks, Inc.Inventors: Robert J. Pera, John R. Sanford
-
Patent number: 8467759Abstract: The present invention offers significant improvements in the performance of a radio receiver operating in an environment with high desired band interference. The present invention comprises a high selectivity RF circuit that is located between the antenna and the radio receiver, and utilizes superheterodyne technology to filter adjacent channel interference in the desired band frequency spectrum. This type of interference is problematic for IEEE 802.11 radio receivers that are implemented with the popular direct conversion radio receiver architectures. The present invention may be utilized in many types of radio receivers.Type: GrantFiled: April 17, 2012Date of Patent: June 18, 2013Assignee: Ubiquiti Networks, Inc.Inventors: Robert J. Pera, Lance D. Lascari
-
Patent number: 8466847Abstract: A microwave system comprises an antenna, antenna feed, a radio transceiver, and appropriate cabling among the aforementioned. Cost, performance and reliability improvements are achieved with further integration of these elements and with design improvements in the antenna feed. One improvement is the integration of the radio transceiver with the antenna feed. This improvement has many benefits including the elimination of RF cables and connectors. Another improvement is the utilization of the digital cable to power the integrated radio transceiver and a center fed parabolic reflector. One embodiment is disclosed for a radio gateway supporting OSI layers 1-7 supported by an Ethernet cable. Another embodiment is a radio with a client controller suitable for supporting OSI layers 1-3, and supported by a USB cable.Type: GrantFiled: June 4, 2009Date of Patent: June 18, 2013Assignee: Ubiquiti Networks, Inc.Inventors: Robert J. Pera, John R. Sanford
-
Patent number: 8421700Abstract: A device comprising a metallic conical portion, said conical portion substantially hollow having a vertex end and a base end, a first cylindrical portion disposed annularly about the base end of the conical portion, a metallic second cylindrical portion coupled to the vertex of the conical portion, said cylindrical portion having a threaded aperture, and an antenna feed coupled to the threaded aperture. The device may have a patch disposed on an insulator portion connected to the second cylindrical portion, said patch and insulator portion each having an aperture, and a metallic ground portion connected to the insulator portion, said ground portion having an ground aperture, and a threaded screw disposed through the ground aperture, the patch, the insulator aperture and into the threaded aperture. An RF feed may be created by coupling the threaded aperture to a conductive material disposed on the insulator portion.Type: GrantFiled: February 4, 2012Date of Patent: April 16, 2013Assignee: Ubiquiti Networks, Inc.Inventor: John R. Sanford
-
Patent number: 8400997Abstract: A communication system comprising one or more wireless stations programmed to await for an authorizing signal to initiate wireless communications with a network controller or access point. The network controller maintains identification information in different queues, said queues based upon the wireless station's activity. The wireless station identification information is moved between the different queues in response to wireless station activity. Between polling, each mobile station aggregates data for the next opportunity to transmit. Multi-polling may be employed such that more than a single station is polled at a time. Polling is accomplished by polling one of the more active station along with a less active station. The less active station is unlikely to transmit, so collisions are avoided to a certain degree. If a lesser active station becomes active, it is moved into the more active queue and consequently will be polled more often.Type: GrantFiled: August 1, 2009Date of Patent: March 19, 2013Assignee: Ubiquiti Networks, Inc.Inventors: Robert J. Pera, Sriram Dayanandan
-
Patent number: 8219059Abstract: The present invention offers significant improvements in the performance of a radio receiver operating in an environment with high desired band interference. The present invention comprises a high selectivity RF circuit that is located between the antenna and the radio receiver, and utilizes superheterodyne technology to filter adjacent channel interference in the desired band frequency spectrum. This type of interference is problematic for IEEE 802.11 radio receivers that are implemented with the popular direct conversion radio receiver architectures. The present invention may be utilized in many types of radio receivers. The high selectivity RF circuit comprises channel select filters, a down-converter, an up-converter and a programmable local oscillator.Type: GrantFiled: November 13, 2009Date of Patent: July 10, 2012Assignee: Ubiquiti Networks, Inc.Inventors: Robert J. Pera, Lance D. Lascari
-
Publication number: 20120131791Abstract: A radiator coupled to an antenna patch disposed along a first end of the radiator, said patch disposed on an insulator. A ground plane is connected to the insulator and a radome is disposed opposite a second end of the radiator. The radome may have a region presenting a convex surface towards the radiator, and the radome has a second region presenting a concave surface towards the radiator. The first end of the conical radiator is the apex of the cone. A ground plane is included and a portion of the ground plane is a planar surface and another portion extends away from the planar portion towards the radome. Also disclosed is a method for forming a radiation pattern by shaping the radome to effectuate a predetermined radiation pattern using localized convex and concave surfaces positioned on the radome at different points in relation to the conical radiator.Type: ApplicationFiled: February 4, 2012Publication date: May 31, 2012Applicant: Ubiquiti Networks Inc.Inventor: John R. SANFORD
-
Publication number: 20120133564Abstract: A device comprising a metallic conical portion, said conical portion substantially hollow having a vertex end and a base end, a first cylindrical portion disposed annularly about the base end of the conical portion, a metallic second cylindrical portion coupled to the vertex of the conical portion, said cylindrical portion having a threaded aperture, and an antenna feed coupled to the threaded aperture. The device may have a patch disposed on an insulator portion connected to the second cylindrical portion, said patch and insulator portion each having an aperture, and a metallic ground portion connected to the insulator portion, said ground portion having an ground aperture, and a threaded screw disposed through the ground aperture, the patch, the insulator aperture and into the threaded aperture. An RF feed may be created by coupling the threaded aperture to a conductive material disposed on the insulator portion.Type: ApplicationFiled: February 4, 2012Publication date: May 31, 2012Applicant: Ubiquiti Networks Inc.Inventor: John R. SANFORD
-
Patent number: 8184061Abstract: A device comprising a metallic conical portion, said conical portion substantially hollow having a vertex end and a base end, a first cylindrical portion disposed annularly about the base end of the conical portion, a metallic second cylindrical portion coupled to the vertex of the conical portion, said cylindrical portion having a threaded aperture, and an antenna feed coupled to the threaded aperture. The device may have a patch disposed on an insulator portion connected to the second cylindrical portion, said patch and insulator portion each having an aperture, and a metallic ground portion connected to the insulator portion, said ground portion having an ground aperture, and a threaded screw disposed through the ground aperture, the patch, the insulator aperture and into the threaded aperture. An RF feed may be created by coupling the threaded aperture to a conductive material disposed on the insulator portion.Type: GrantFiled: September 16, 2009Date of Patent: May 22, 2012Assignee: Ubiquiti NetworksInventor: John R. Sanford
-
Patent number: 8184064Abstract: A conical radiator coupled to an antenna patch disposed along a first end of the radiator, said patch disposed on an insulator. A ground plane is connected to the insulator and a radome is disposed opposite a second end of the radiator. The radome has a first region presenting a convex surface towards the radiator, and the radome has a second region presenting a concave surface towards the radiator. The first end of the conical radiator is the apex of the cone. A ground plane is included and a portion of the ground plane is a planar surface and another portion extends away from the planar portion towards the radome. Also disclosed is a method for forming a radiation pattern by shaping the radome to effectuate a predetermined radiation pattern using localized convex and concave surfaces positioned on the radome at different points in relation to the conical radiator.Type: GrantFiled: September 16, 2009Date of Patent: May 22, 2012Assignee: Ubiquiti NetworksInventor: John R. Sanford
-
Patent number: 7934952Abstract: A connecting device comprising a body having a threaded portion and a sleeve portion. A plurality of coaxial receptacles disposed in the threaded portion, each receptacle formed to couple with element of a coaxial cable connector, and a plurality of coaxial mounts disposed on the sleeve end. The coaxial mounts may be coupled to coaxial leads with each lead having a mini-connectors. The body is substantially similar to a type-n connector and provides for easy coupling of multiple coaxial cables within a single connector housing.Type: GrantFiled: July 29, 2009Date of Patent: May 3, 2011Assignee: Ubiquiti NetworksInventor: Robert J. Pera
-
Publication number: 20110063183Abstract: A conical radiator coupled to an antenna patch disposed along a first end of the radiator, said patch disposed on an insulator. A ground plane is connected to the insulator and a radome is disposed opposite a second end of the radiator. The radome has a first region presenting a convex surface towards the radiator, and the radome has a second region presenting a concave surface towards the radiator. The first end of the conical radiator is the apex of the cone. A ground plane is included and a portion of the ground plane is a planar surface and another portion extends away from the planar portion towards the radome. Also disclosed is a method for forming a radiation pattern by shaping the radome to effectuate a predetermined radiation pattern using localized convex and concave surfaces positioned on the radome at different points in relation to the conical radiator.Type: ApplicationFiled: September 16, 2009Publication date: March 17, 2011Applicant: UBiQUiTi Networks, IncInventor: John R. Sanford
-
Publication number: 20110063182Abstract: A device comprising a metallic conical portion, said conical portion substantially hollow having a vertex end and a base end, a first cylindrical portion disposed annularly about the base end of the conical portion, a metallic second cylindrical portion coupled to the vertex of the conical portion, said cylindrical portion having a threaded aperture, and an antenna feed coupled to the threaded aperture. The device may have a patch disposed on an insulator portion connected to the second cylindrical portion, said patch and insulator portion each having an aperture, and a metallic ground portion connected to the insulator portion, said ground portion having an ground aperture, and a threaded screw disposed through the ground aperture, the patch, the insulator aperture and into the threaded aperture. An RF feed may be created by coupling the threaded aperture to a conductive material disposed on the insulator portion.Type: ApplicationFiled: September 16, 2009Publication date: March 17, 2011Applicant: UBiQUiTi Networks, IncInventor: John R. Sanford
-
Patent number: D637560Type: GrantFiled: July 29, 2009Date of Patent: May 10, 2011Assignee: Ubiquiti NetworksInventor: Robert J Pera