Patents Assigned to UHNDER, INC.
  • Patent number: 12078748
    Abstract: A radar system includes an interference manager. The interference manager detects the presence and the characteristics of interfering radio signals used by other radar systems in proximity. The interference manager also controls the operating characteristics of the radar system in response to the detected interfering signal characteristics. The interference manager selects a time slot, or a frequency band, or a time slot and a frequency band to avoid or mitigate the interfering radio signals from other radar systems.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: September 3, 2024
    Assignee: Uhnder, Inc.
    Inventors: Ali Erdem Ertan, Murtaza Ali, Monier Maher, Aria Eshraghi, Curtis Davis
  • Patent number: 11977178
    Abstract: A multi-chip MIMO radar system includes a plurality of transmitters and a plurality of receivers. Each of the pluralities of transmitters and receivers are arranged across a plurality of chips. The multi-chip MIMO radar system is configured to provide an exemplary chip synchronization such that the transmitters and receivers of each chip of the radar system are synchronized with the transmitters and receivers of every other chip of the radar system.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: May 7, 2024
    Assignee: Uhnder, Inc.
    Inventors: Monier Maher, Marius Goldenberg, Chung-Kai Chow, Frederick Rush, Otto A. Schmid
  • Patent number: 11953615
    Abstract: A radar system with on-system calibration for cross-coupling and gain/phase variations includes capabilities for radar detection and correction for system impairments to improve detection performance. The radar system is equipped with pluralities of transmit antennas and pluralities of receive antennas. The radar system uses a series of calibration measurements of a known object to estimate the system impairments. A correction is then applied to the beamforming weights to mitigate the effect of these impairments on radar detection. The estimation and correction requires no external measurement equipment and can be computed on the radar system itself.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: April 9, 2024
    Assignee: Uhnder Inc.
    Inventors: Murtaza Ali, Ali Erdem Ertan, Kevin B. Foltinek
  • Patent number: 11906620
    Abstract: A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system includes transmitters configured to transmit radio signals, receivers configured to receive radar signals, and a control unit. The received radio signals include transmitted radio signals transmitted by the transmitters and reflected from objects in an environment. The control unit adaptively controls the transmitters and the receivers based on a selected operating mode for the radar system. The selected operating mode meets a desired operational objective defined by current environmental conditions. The control unit is configured to control the receivers to produce and process data according to the selected operating mode.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: February 20, 2024
    Assignee: Uhnder, Inc.
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Patent number: 11899126
    Abstract: A multi-chip MIMO radar system includes a plurality of transmitters and a plurality of receivers. Each of the pluralities of transmitters and receivers are arranged across a plurality of chips. The multi-chip MIMO radar system includes a central processor configured to receive data from the plurality of chips. The central processor is operable to combine the information from each radar chip to produce improved range detection and angular resolvability of targets.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: February 13, 2024
    Assignee: Uhnder, Inc.
    Inventors: Monier Maher, Arunesh Roy, Murtaza Ali, Jean Pierre Bordes, Curtis Davis
  • Patent number: 11867828
    Abstract: A radar system operated in a variable power mode includes transmitters, receivers, and a controller. The transmitters transmit digitally modulated signals. The receivers receive radio signals that include transmitted radio signals from the transmitter and reflected from objects in the environment. In addition, an interfering radar signal from a different radar system is received that has been linearly frequency modulated. Each receiver includes a linear frequency modulation canceler that includes a FIR filter, and is configured as a 1-step linear predictor with least mean squares adaptation to attempt to cancel the interfering signal. The prediction is subtracted from the FIR input signal that drives the adaptation and also comprises the canceler output. The controller is configured to control the adaptation on a first receiver. The controller delays the adaptation such that transients at the start of each receive pulse are avoided.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: January 9, 2024
    Assignee: Uhnder, Inc.
    Inventors: Richard T. Behrens, Fred Harris, Frederick Rush, Monier Maher, Curtis Davis, Murtaza Ali
  • Patent number: 11846696
    Abstract: A radar system including a transmitter configured for installation and use with the radar system and configured to transmit radio signals. The transmitted radio signals are defined by a spreading code. The radar system also includes a receiver configured for installation and use with the radar system and configured to receive radio signals that include transmitted radio signals transmitted by the transmitter and reflected from objects in an environment. The receiver is configured to convert the received radio signals into frequency domain received samples. The receiver is also configured to correlate the frequency domain received samples to detect object distance.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: December 19, 2023
    Assignee: Uhnder, Inc.
    Inventors: Raghunath K. Rao, Curtis Davis, Monier Maher, Steve Borho, Nikhilesh Bhagat, Jean P. Bordes
  • Patent number: 11821981
    Abstract: A method for operating a radar sensing system includes configuring a transmitter to transmit a radio signal. A receiver is configured to receive radio signals. The received radio signals include the transmitted radio signal transmitted by the transmitter and reflected from objects in the environment. The method includes with advanced temporal knowledge of the codes used to modulate the transmitted radio signal, using code values of the plurality of codes, and in combination with a bank of digital finite impulse response (FIR) filters, generating complementary signals of any self-interference noise. The method further includes subtracting the complementary signals at one or more points in the receiver prior to the interference desensing the receiver. The radar sensing system further includes a frequency modulated continuous wave (FMCW) interference canceller for detecting the largest interference signals and sequentially cancelling them while signal processing the received radio signals.
    Type: Grant
    Filed: March 28, 2023
    Date of Patent: November 21, 2023
    Assignee: UHNDER, INC.
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Patent number: 11740323
    Abstract: A radar system includes a transmitter, a receiver, and a processor. The transmitter transmits continuous wave radio signals. The receiver receives radio signals that includes the transmitted radio signal reflected from targets in an environment. The targets include a first target and a second target. The first target is closer than a first threshold distance from the vehicle, and the second target is farther than the first threshold distance from the vehicle. A processor is configured to process the received radio signals. The processor is configured to selectively process the received radio signals to detect the second target. The processor selectably adjusts operational parameters of at least one of the transmitter and the receiver to discriminate between the first target and the second target.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: August 29, 2023
    Assignee: Uhnder, Inc.
    Inventors: Curtis Davis, Jean P. Bordes, Monier Maher, Wayne Stark, Raghunath K. Rao
  • Patent number: 11726172
    Abstract: A radar sensing system includes a plurality of transmitters configured to transmit radio signals and a plurality of receivers configured to receive radio signals. First and second transmitters of the plurality of transmitters are configured to generate radio signals defined by first and second spreading code chip sequences, respectively. A first receiver of the plurality of receivers processes received radio signals as defined by a plurality of spreading code chip sequences that includes at least the first and second spreading code chip sequences. The radar sensing system also includes a code generator for generating the spreading code chip sequences.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: August 15, 2023
    Assignee: Uhnder, Inc
    Inventors: Monier Maher, Jean Pierre Bordes, Wayne E. Stark, Raghunath Krishna Rao, Frederick Rush, Curtis Davis, Srikanth Gollapudi, Steve Borho, Murtaza Ali
  • Patent number: 11681017
    Abstract: A radar sensing system includes a transmitter and a receiver. The transmitter is configured to transmit a radio signal. The receiver is configured to receive radio signals that include the transmitted radio signal reflected from objects in the environment. The transmitter and receiver are configured to distribute the signal power over frequency so that it is separated from noise and impairments at DC and low frequencies as may be caused by some radar system components which introduce DC offsets and/or low frequency (e.g. flicker) noise.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: June 20, 2023
    Assignee: Uhnder, Inc.
    Inventors: Richard Behrens, Frederick Rush, Monier Maher, Murtaza Ali
  • Patent number: 11582305
    Abstract: A shared radar and communications system. The system includes a transmitter and a receiver. The transmitter modules signals based on a first spreading code defined at least in part by a first plurality of information bits. The first plurality of information bits encodes selected information. The transmitter transmits the modulated signals. The receiver receives a first signal and a second signal. The first signal includes the transmitted signals transmitted by the transmitter and reflected from objects in an environment. The receiver processes the first signal to detect objects in the environment. The second signal is transmitted from another system. The second signal carries a second plurality of information bits. The receiver processes the second signal to determine the second plurality of information bits. The second plurality of information bits are encoded with information selected by the other system.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: February 14, 2023
    Assignee: Uhnder, Inc.
    Inventors: Curtis Davis, Manju Hegde, Wayne E. Stark, Aria Eshraghi, Marius Goldenberg, Murtaza Ali
  • Patent number: 11474225
    Abstract: A chip-implementation of a millimeter wave MIMO radar comprises transmitters for transmitting short bursts of digitally modulated radar carrier signals and receivers for receiving delayed echoes of those signals. Various signal formats defined by the number of bits per transmit burst, the transmit burst duration, the receive period duration, the bitrate, the number of range bins, and the number of bursts per scan, facilitate the choice of modulating bit patterns such that when correlating for target echoes over an entire scan, the correlation codes for different ranges and different transmitters are mutually orthogonal or nearly so. In the event of imperfect orthogonality, simple orthogonalization schemes are revealed, such as subtraction of strong already-detected target signals for better detecting weaker signals or moving targets that are rendered non-orthogonal by their Doppler shift.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: October 18, 2022
    Assignee: Uhnder, Inc.
    Inventors: Paul W. Dent, Curtis Davis, Murtaza Ali
  • Patent number: 11454697
    Abstract: A radar includes transmitters, receivers, a memory, and a processor. The transmitters transmit radio signals, and the receivers receive reflected radio signals. The processor produces samples by correlating reflected radio signals with time-delayed replicas of transmitted radio signals. The processor stores this information as a first data structure, with information related to signals reflected from objects as a function of time (one dimension of the data structure) at various distances (a second dimension of the data structure) for various receivers (a third dimension of the data structure). The first data structure is processed to compute velocity and angle estimates, which are stored in second and third data structures, respectively. One or more memory optimizations are used to increase performance. Before storing the second and third data structures in a memory, the second and third data structures are sparsified to only include the outputs in specific regions of interest.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: September 27, 2022
    Assignee: Uhnder, Inc.
    Inventors: Monier Maher, Jean Pierre Bordes, Curtis Davis
  • Patent number: 11340331
    Abstract: A radar system includes transmitters and receivers configured for installation and use in a vehicle. The transmitters transmit radio signals. The receivers receive radio signals that include the transmitted radio signals reflected from objects in an environment. Each receiver has a controller, a buffer, and a post-buffer processor. The receiver processes the received radio signals and stored data samples in the buffer. The buffer operates in a plurality of modes defined by the controller. Two or more modes of operation of the plurality of modes are performed with a same set of data samples stored in the buffer. The post-buffer processor receives data samples from the buffer and performs at least one of correlation processing to determine object ranges, Doppler processing to determine object velocity, and, in combination with other receivers of the plurality of receivers, further processing to determine angular locations of the objects.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: May 24, 2022
    Assignee: Uhnder, Inc.
    Inventors: Monier Maher, Curtis Davis, Frederick Rush, Aria Eshraghi
  • Patent number: 11262448
    Abstract: A radar system has different modes of operation. In a method for operating the radar system, at least one of one or more transmitters are configured to transmit modulated continuous-wave radio signals, while at least one of one or more receivers are configured to receive radio signals. The received radio signals include the transmitted radio signals transmitted by the one or more transmitters and reflected from objects in the environment. The method further includes selectively modifying an operational parameter of at least one of the transmitters or at least one of the receivers. The selected operational parameter is modified to meet changing operational requirements of the radar sensing system.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: March 1, 2022
    Assignee: Uhnder, Inc.
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali
  • Patent number: 11194016
    Abstract: A radar system for mobile applications includes transmitters and receivers. The transmitters are configured for installation and use in a mobile application. Each of the transmitters is configured to generate a radio signal. The receivers are configured for installation and use in the mobile application. Each of the receivers is configured to receive radio signals that include transmitted radio signals transmitted by the transmitters and reflected from objects in the environment. A first transmitter of the transmitters is configured to frequency modulate the transmitted radio signal using a shaped frequency pulse which is defined by a sequence of chips. The sequence of chips is selected to realize a selected frequency pulse shape.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: December 7, 2021
    Assignee: Uhnder, Inc.
    Inventors: Aria Eshraghi, Curtis Davis, Murtaza Ali, Paul Dent
  • Patent number: 11175377
    Abstract: A radar system includes a transmitter, a receiver, and a processor. The transmitter is configured to transmit a radio signal. The receiver is configured to receive a radio signal which includes the transmitted radio signal reflected from an object in the environment. The processor is configured to control the transmitter and the receiver to at least one of mitigate interference in the received radio signals, and avoid interfering radio signals transmitted by another radio transmitter.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: November 16, 2021
    Assignee: Uhnder, Inc.
    Inventors: Jean P. Bordes, Curtis Davis, Wayne E. Stark, Otto A. Schmid, Raghunath K. Rao
  • Patent number: 11105890
    Abstract: A radar system operated in a variable power mode includes transmitters, receivers, and a controller. The transmitters transmit digitally modulated signals. The receivers receive radio signals that include transmitted radio signals from the transmitter and reflected from objects in the environment. In addition, an interfering radar signal from a different radar system is received that has been linearly frequency modulated. Each receiver includes a linear frequency modulation canceler that includes a FIR filter, and is configured as a 1-step linear predictor with least mean squares adaptation to attempt to cancel the interfering signal. The prediction is subtracted from the FIR input signal that drives the adaptation and also comprises the canceler output. The controller is configured to control the adaptation on a first receiver. The controller delays the adaptation such that transients at the start of each receive pulse are avoided.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: August 31, 2021
    Assignee: Uhnder, Inc.
    Inventors: Richard T. Behrens, Fred Harris, Frederick Rush, Monier Maher, Curtis Davis, Murtaza Ali
  • Patent number: 11086010
    Abstract: A radar system processes signals in a flexible, adaptive manner to determine range, Doppler (velocity) and angle of objects in an environment. The radar system processes the received signal to achieve different objectives depending on one or more of a selected range resolution, a selected velocity resolution, and a selected angle of arrival resolution, as defined by memory requirements and processing requirements. The system allows improved resolution of range, Doppler and/or angle depending on the memory requirements and processing requirements. The system also adapts to changing environmental conditions including interfering radio signals.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: August 10, 2021
    Assignee: Uhnder, Inc.
    Inventors: Curtis Davis, Monier Maher, Jean P. Bordes, Manju Hegde, Otto A. Schmid, Raghunath K. Rao, Marius Goldenberg, Aria Eshraghi, Vito Giannini, David S. Trager, Nikhilesh Bhagat, Srikanth Gollapudi, Sundar Govindarajan, Steve Borho, Jonathan Preussner, Paul W. Dent, Paul Bassett, Stephen W. Alland, Fred Harris, Wayne E. Stark, Murtaza Ali