Patents Assigned to Ultizyme International Ltd.
  • Patent number: 8642344
    Abstract: The present invention provides a method for measuring a substrate concentration by accumulating an energy resulting from a reaction between a biocatalyst and a substrate recognized by the biocatalyst to a certain level; and using a dependency of an accumulation rate on the substrate concentration as an index; and a apparatus therefor. In particular, the present invention provides a method in which the measurement of the accumulation rate is carried out by measuring a frequency of an energy release in a certain amount of time when the energy accumulated in the capacitor reaches the certain level and is then released.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: February 4, 2014
    Assignees: Bioengineering Laboratories, LLC, Arkray, Inc., Ultizyme International Ltd.
    Inventors: Wakako Tsugawa, Koji Sode
  • Patent number: 8641972
    Abstract: The present invention provides a method for measuring a substrate concentration by accumulating an energy resulting from a reaction between a biocatalyst and a substrate recognized by the biocatalyst to a certain level; and using a dependency of an accumulation rate on the substrate concentration as an index; and a apparatus therefor. In particular, the present invention provides a method in which the measurement of the accumulation rate is carried out by measuring a frequency of an energy release in a certain amount of time when the energy accumulated in the capacitor reaches the certain level and is then released.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: February 4, 2014
    Assignees: Bioengineering Laboratories, LLC, Arkray, Inc., Ultizyme International Ltd.
    Inventors: Wakako Tsugawa, Koji Sode
  • Publication number: 20130240374
    Abstract: A fusion protein of pyrroloquinoline quinone glucose dehydrogenase (PQQGDH) and a cytochrome is disclosed. PQQGDH is, for example, a water-soluble PQQGDH derived from Acinetobacter calcoaceticus. The cytochrome is, for example, an electron transfer domain of quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni. The fusion protein of the present invention shows intramolecular electron transfer from PQQ, a redox center, to the cytochrome, which allow construction of a direct electron transfer-type glucose sensor which requires no electron mediators.
    Type: Application
    Filed: October 19, 2012
    Publication date: September 19, 2013
    Applicants: ULTIZYME INTERNATIONAL LTD., ARKRAY, INC.
    Inventor: Koji Sode
  • Publication number: 20130168263
    Abstract: Disclosed is a modified glucose dehydrogenases that has dramatically increased productivity in Escherichia coli and dramatically increased thermal stability, which is obtained by introducing specific amino acid mutations to glucose dehydrogenase derived from Botryotinia fuckeliana. Also disclosed is a modified glucose dehydrogenases that has dramatically increased productivity in E. coli and dramatically increased thermal stability, which is obtained by replacing two amino acid residues in glucose dehydrogenase of fungal origin with cysteine residues. The novel glucose dehydrogenase has a low reactivity to xylose.
    Type: Application
    Filed: June 29, 2011
    Publication date: July 4, 2013
    Applicant: ULTIZYME INTERNATIONAL LTD.
    Inventors: Koji Sode, Kazushige Mori
  • Publication number: 20130102016
    Abstract: A modified pyrroloquinoline quinone glucose dehydrogenase that exhibits a high selectivity for glucose is provided. A modified pyrroloquinoline quinone glucose dehydrogenase is disclosed in which the amino acid residue G at Position 99 of a pyrroloquinoline quinone glucose dehydrogenase (PQQGDH) represented by SEQ ID NO: 1, or the amino acid residue G at Position 100 of the pyrroloquinoline quinone glucose dehydrogenase (PQQGDH) represented by SEQ ID NO: 3, is substituted by the amino acid sequence TGZN (where Z is SX, S, or N and X is any amino acid residue). The modified PQQGDH of the present invention may additionally comprise one or more mutations selected from the group consisting of Q192G, Q192A, or Q192S; L193X; E277X; A318X; Y367A, Y367F, or Y367W; G451C; and N452X (where X is any amino acid residue).
    Type: Application
    Filed: October 25, 2012
    Publication date: April 25, 2013
    Applicants: ULTIZYME INTERNATIONAL LTD., ARKRAY, INC.
    Inventors: ARKRAY, INC., ULTIZYME INTERNATIONAL LTD.
  • Publication number: 20130020196
    Abstract: To provide a biosensor capable of measuring the concentration of specific component, such as glucose or neutral fat, in sample in a short time. The biosensor is A biosensor, comprising an insulating base plate, an electrode system containing at least a working electrode and a counter electrode and formed on the insulating base plate, and a sample-supplying section formed on the electrode system, wherein the sample-supplying section has a reaction layer comprising: a first reaction layer formed on the electrode system and containing at least a redox enzyme into which pyrroloquinoline quinone (PQQ), flavin adenine dinucleotide (FAD), or flavin mononucleotide (FMN) is incorporated as a prosthetic group; and a second reaction layer formed by applying, onto the first reaction layer, a solution including a lipid decomposing enzyme.
    Type: Application
    Filed: March 30, 2011
    Publication date: January 24, 2013
    Applicants: ULTIZYME INTERNATIONAL LTD., CCI CORPORATION
    Inventors: Naohide Nishiwaki, Shoichi Miyamoto, Akitsugu Inagawa, Hironobu Murase
  • Publication number: 20130015078
    Abstract: The present invention provides a method for measuring a substrate concentration by accumulating an energy resulting from a reaction between a biocatalyst and a substrate recognized by the biocatalyst to a certain level; and using a dependency of an accumulation rate on the substrate concentration as an index; and a apparatus therefor. In particular, the present invention provides a method in which the measurement of the accumulation rate is carried out by measuring a frequency of an energy release in a certain amount of time when the energy accumulated in the capacitor reaches the certain level and is then released.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 17, 2013
    Applicants: Bioengineering Laboratories, LLC, Ultizyme International Ltd., Arkray, Inc.
    Inventors: Wakako Tsugawa, Koji Sode
  • Publication number: 20130015063
    Abstract: The present invention provides a method for measuring a substrate concentration by accumulating an energy resulting from a reaction between a biocatalyst and a substrate recognized by the biocatalyst to a certain level; and using a dependency of an accumulation rate on the substrate concentration as an index; and a apparatus therefor. In particular, the present invention provides a method in which the measurement of the accumulation rate is carried out by measuring a frequency of an energy release in a certain amount of time when the energy accumulated in the capacitor reaches the certain level and is then released.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 17, 2013
    Applicants: Bioengineering Laboratories, LLC, Ultizyme International Ltd., Arkray, Inc.
    Inventors: Wakako Tsugawa, Koji Sode
  • Patent number: 8354112
    Abstract: A fusion protein of pyrroloquinoline quinone glucose dehydrogenase (PQQGDH) and a cytochrome is disclosed. PQQGDH is, for example, a water-soluble PQQGDH derived from Acinetobacter calcoaceticus. The cytochrome is, for example, an electron transfer domain of quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni. The fusion protein of the present invention shows intramolecular electron transfer from PQQ, a redox center, to the cytochrome, which allow construction of a direct electron transfer-type glucose sensor which requires no electron mediators.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: January 15, 2013
    Assignees: Arkray, Inc., Ultizyme International Ltd.
    Inventor: Koji Sode
  • Patent number: 8329439
    Abstract: A modified pyrroloquinoline quinone glucose dehydrogenase that exhibits a high selectivity for glucose is provided. A modified pyrroloquinoline quinone glucose dehydrogenase is disclosed in which the amino acid residue G at Position 99 of a pyrroloquinoline quinone glucose dehydrogenase (PQQGDH) represented by SEQ ID NO: 1, or the amino acid residue G at Position 100 of the pyrroloquinoline quinone glucose dehydrogenase (PQQGDH) represented by SEQ ID NO: 3, is substituted by the amino acid sequence TGZN (where Z is SX, S, or N and X is any amino acid residue). The modified PQQGDH of the present invention may additionally comprise one or more mutations selected from the group consisting of Q192G, Q192A, or Q192S; L193X; E277X; A318X; Y367A, Y367F, or Y367W; G451C; and N452X (where X is any amino acid residue).
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: December 11, 2012
    Assignees: ARKRAY, Inc., Ultizyme International Ltd.
    Inventor: Koji Sode
  • Patent number: 8252236
    Abstract: The present invention provides a method for measuring a substrate concentration by accumulating an energy resulting from a reaction between a biocatalyst and a substrate recognized by the biocatalyst to a certain level; and using a dependency of an accumulation rate on the substrate concentration as an index; and a apparatus therefor. In particular, the present invention provides a method in which the measurement of the accumulation rate is carried out by measuring a frequency of an energy release in a certain amount of time when the energy accumulated in the capacitor reaches the certain level and is then released.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: August 28, 2012
    Assignees: Bioengineering Laboratories, LLC, Arkray, Inc., Ultizyme International Ltd.
    Inventors: Wakako Tsugawa, Koji Sode
  • Publication number: 20120142037
    Abstract: A modified pyrroloquinoline quinone glucose dehydrogenase that exhibits a high selectivity for glucose is provided. A modified pyrroloquinoline quinone glucose dehydrogenase is disclosed in which the amino acid residue G at Position 99 of a pyrroloquinoline quinone glucose dehydrogenase (PQQGDH) represented by SEQ ID NO: 1, or the amino acid residue G at Position 100 of the pyrroloquinoline quinone glucose dehydrogenase (PQQGDH) represented by SEQ ID NO: 3, is substituted by the amino acid sequence TGZN (where Z is SX, S, or N and X is any amino acid residue). The modified PQQGDH of the present invention may additionally comprise one or more mutations selected from the group consisting of Q192G, Q192A, or Q192S; L193X; E277X; A318X; Y367A, Y367F, or Y367W; G451C; and N452X (where X is any amino acid residue).
    Type: Application
    Filed: June 23, 2008
    Publication date: June 7, 2012
    Applicant: ULTIZYME INTERNATIONAL LTD.
    Inventor: Koji Sode
  • Publication number: 20100261072
    Abstract: The present invention provides an enzyme electrode composed of a carbon particle on which glucose dehydrogenase (GDH) with flavine adenine dinucleotide (FAD) as a coenzyme is supported and an electrode layer contacting the carbon particle, wherein the carbon particle and/or the electrode layer are/is composed of the carbon particles with a particle diameter of not more than 100 nm and a specific surface area of at least 200 m2/g.
    Type: Application
    Filed: September 18, 2008
    Publication date: October 14, 2010
    Applicant: Ultizyme International Ltd.
    Inventors: Wakako Tsugawa, Koji Sode
  • Publication number: 20100200429
    Abstract: The present invention provides a method for measuring a substrate concentration by accumulating an energy resulting from a reaction between a biocatalyst and a substrate recognized by the biocatalyst to a certain level; and using a dependency of an accumulation rate on the substrate concentration as an index; and a apparatus therefor. In particular, the present invention provides a method in which the measurement of the accumulation rate is carried out by measuring a frequency of an energy release in a certain amount of time when the energy accumulated in the capacitor reaches the certain level and is then released.
    Type: Application
    Filed: September 18, 2008
    Publication date: August 12, 2010
    Applicant: ULTIZYME INTERNATIONAL LTD.
    Inventors: Wakako Tsugawa, Koji Sode
  • Publication number: 20090236222
    Abstract: It is an object of the present invention to provide a sensor, which is capable of measuring, quickly and in high accuracy, concentration of neutral fat from a sample such as a biological sample or the like, without executing pretreatment of the sample. This object is attained by a biosensor for measuring concentration of neutral fat, based on value of current flowing in the electrode system, having: an insulating substrate; an electrode system having a working electrode and a counter electrode, formed onto the insulating substrate; and a reaction layer having a lipoprotein lipase, a glycerol dehydrogenase and an electron mediator, formed at the upper part or the vicinity of the electrode system.
    Type: Application
    Filed: March 27, 2006
    Publication date: September 24, 2009
    Applicants: CCI Corporation, Ultizyme International Ltd.
    Inventors: Hironobu Murase, Motoaki Kuwahara, Masayuki Yamada
  • Patent number: 7550274
    Abstract: Disclosed is a modified glucose dehydrogenase having pyrroloquinoline quinone as a coenzyme, wherein one or more amino acid residues in a region of 186-206 amino acid of water-soluble PQQGDH derived from Acinetobacter calcoaceticus or in an equivalent region from other species are replaced with other amino acid residues. Also disclosed is a gene coding for the modified glucose dehydrogenase of the invention, a vector comprising the gene of the invention and a transformant comprising the vector, as well as a glucose assay kit and a glucose sensor comprising the modified glucose dehydrogenase of the invention.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: June 23, 2009
    Assignee: Ultizyme International Ltd.
    Inventor: Koji Sode
  • Patent number: 7244600
    Abstract: Disclosed is a water-soluble PQQGDH wherein two subunits are linked together via a disulfide bond. The water-soluble PQQGDH of the invention exhibits improved thermal stability.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: July 17, 2007
    Assignee: Ultizyme International Ltd.
    Inventors: Koji Sode, Satoshi Igarashi