Abstract: Embodiments of the present application provide a pixel compensation circuit, a driving method thereof, and an electroluminescent display. The pixel compensation circuit includes a grayscale converter and a current generator, and the grayscale converter is configured to receive a first data voltage and a second data voltage, establish a compensation voltage in a first time period, and change the compensation voltage into the grayscale voltage in a second time period. The current generator is configured to pass a driving current to the electroluminescent element in response to the grayscale voltage so as to drive the electroluminescent element to emit light with a main grayscale or a sub-grayscale. In this way, the high bit depth can be achieved, the real grayscale of the pixel can be presented, the problem of grayscale confusion caused by a small data range can be solved, and the picture quality of the display can be improved.
Abstract: Embodiments of the present disclosure provide a structure of pixel layout and an electroluminescent display, wherein there is at least one pixel unit including the structure of pixel layout in the electroluminescent display. The structure of pixel layout includes a high-voltage device area, a low-voltage device area, and a transition area. The first type of high-voltage transistor and the capacitor of the transition area share the second type of well contact, and the second type of low-voltage transistor in the low-voltage device area includes a first type of well contact coupled to an intermediate voltage terminal. With such configuration, the operating voltage of each device may be adjusted so that the pixel circuit can operate normally in a limited layout area of a subpixel, and the problem that the pixel density cannot be improved is solved.
Abstract: Embodiments of the present application provide a pixel circuit, a driving method thereof, and a display device. The pixel circuit includes a grayscale converter and a current generator, wherein the grayscale converter is configured to receive a first data voltage and a second data voltage and correspondingly generate a grayscale voltage. Meanwhile, the grayscale voltage is changed by a ramp voltage to correspondingly control the duration for passing through the driving current, so that the electroluminescent element may emit light with a grayscale corresponding to a main grayscale or a sub-grayscale. In this way, high bit depth can be achieved, real grayscale of the pixel can be presented, the problem of grayscale confusion caused by a small data range can be improved, and the picture quality of the display can be increased.
Abstract: Embodiments of the present disclosure provide a pixel circuit and a backplane and a display device thereof. The pixel circuit is used for being provided on the backplane of the display device, and includes a data selecting circuit, a latch circuit, a driving circuit, and a switching circuit. The latch circuit is configured to control the data selecting circuit to switch between different data paths on a basis of time axis. The data selecting circuit is configured to provide corresponding grayscale signal, so that the driving circuit generates the corresponding light-emitting signal, and provides the same to the electroluminescent element via the switching circuit to drive the electroluminescent element to emit light with different grayscales. By switching between different data paths, a high bit depth can be achieved, and the real grayscale of pixels can be presented, the mixing problems of grayscales caused by small data ranges are improved and the display quality of the display device is increased.