Patents Assigned to ULTRAMEMORY INC.
-
Patent number: 11881248Abstract: The present invention provides a semiconductor module, a semiconductor member, and a method for manufacturing the same that make it possible to improve heat dissipation efficiency. This semiconductor module 1 comprises: a power supply unit 40; a RAM unit 50, which is a RAM module having a facing surface disposed so as to face an exposed surface of a logic chip 20 and an exposed surface of the power supply unit 40, the RAM module being disposed across some of a plurality of logic chip signal terminals 22 and some of a plurality of power supply unit power supply terminals 41; and a support substrate 10 having a power feeding circuit capable of feeding electrical power to the logic chip and to the power supply unit 40, one main surface of the support substrate 10 being disposed adjacent to a heat dissipation surface of the RAM unit 50, which is the surface of the RAM unit 50 opposite the facing surface.Type: GrantFiled: January 30, 2019Date of Patent: January 23, 2024Assignee: ULTRAMEMORY INC.Inventors: Fumitake Okutsu, Takao Adachi
-
Patent number: 11437350Abstract: A semiconductor device includes a plurality of memory chips laminated to each other, each of the memory chips include a first transmission/reception coil for communication by means of inductive coupling; first lead-out lines led out from both ends of the first transmission/reception coil; and a first transmission/reception circuit, which is connected to the first lead-out lines, and which inputs/outputs signals to/from the first transmission/reception coil.Type: GrantFiled: January 26, 2021Date of Patent: September 6, 2022Assignee: ULTRAMEMORY INC.Inventors: Naoki Ogawa, Toshitugu Ueda, Kazuo Yamaguchi
-
Patent number: 11410970Abstract: The present invention provides a semiconductor module capable of improving a bandwidth between a logic chip and a RAM. According to the present invention, a semiconductor module 1 is provided with: a logic chip; a pair of RAM units 30 each composed of a lamination-type RAM module; a first interposer 10 electrically connected to the logic chip and to each of the pair of RAM units 30; and a connection unit 40 that communicatively connects the logic chip and each of the pair of RAM units 30, wherein one RAM unit 30a is placed on the first interposer 10, and has one end portion disposed so as to overlap, in the lamination direction C, one end portion of the logic chip with the connection unit 40 therebetween, and the other RAM unit 30b is disposed so as to overlap the one RAM unit 30a with the connection unit 40 therebetween, and is also disposed along the outer periphery of the logic chip.Type: GrantFiled: June 26, 2020Date of Patent: August 9, 2022Assignee: ULTRAMEMORY INC.Inventors: Ryuji Takishita, Takao Adachi
-
Patent number: 11183484Abstract: The present invention is intended to provide a semiconductor module and a DIMM module that are capable of stably supplying power to a plurality of stacked memory chips, a manufacturing method of the semiconductor module and a manufacturing method of the DIMM module. The semiconductor module 1 having a plurality of memory chips 21 includes: a memory substrate 10 having a power supply circuit 12 exposed on an arrangement surface as one surface of the memory substrate 10; and at least one memory unit 20 arranged over the arrangement surface of the memory substrate 10. The memory unit 20 includes: the plurality of memory chips 21 stacked together such that a stacking direction D is along the arrangement surface; a through electrode 22 passing through the plurality of memory chips 21 in the stacking direction D; and an electrode layer 23 formed on one end surface in the stacking direction D and connected to the through electrode 22 and the power supply circuit 12.Type: GrantFiled: November 11, 2019Date of Patent: November 23, 2021Assignee: ULTRAMEMORY INC.Inventors: Fumitake Okutsu, Takao Adachi
-
Patent number: 11094367Abstract: Provided are a sub-amplifier, a switching device and a semiconductor device capable of simultaneously reading or writing many data items, while suppressing an increase in chip surface area, by using a single end signal line. A sub-amplifier SAP comprises: a first pre-charge circuit 110 that releases pre-charges of a pair of local wires LIOT/LIOB; a local inversion drive circuit 120 that, on the basis of a write signal WT, inverts and transfers write data to a sense amplifier SA from a main wire MIOB via one of the local wires LIOT/LIOB; a local non-inversion drive circuit 130 that, on the basis of the write signal WT, transfers the write data to the sense amplifier SA from the main wire MIOB via the other one of the local wires LIOT/LIOB; and a main inversion drive circuit 140 that, on the basis of a read signal RT, inverts and transfers read data to the main wire MIOB from one of the local wires LIOT/LIOB.Type: GrantFiled: September 11, 2017Date of Patent: August 17, 2021Assignee: ULTRAMEMORY INC.Inventor: Yasutoshi Yamada
-
Patent number: 10937765Abstract: A semiconductor device includes a plurality of memory chips laminated to each other, each of the memory chips include a first transmission/reception coil for communication by means of inductive coupling; first lead-out lines led out from both ends of the first transmission/reception coil; and a first transmission/reception circuit, which is connected to the first lead-out lines, and which inputs/outputs signals to/from the first transmission/reception coil.Type: GrantFiled: October 8, 2019Date of Patent: March 2, 2021Assignee: ULTRAMEMORY INC.Inventors: Naoki Ogawa, Toshitugu Ueda, Kazuo Yamaguchi
-
Patent number: 10868528Abstract: Provided is a signal output device capable of appropriately outputting a signal even when a received signal amount is low. A signal output device is provided with: a high-side comparator; a low-side comparator; a high-side AC coupling unit which is connected to one end of the input terminal of the high-side comparator, and removes a DC component from either a high signal or a low signal; a low-side AC coupling unit which is connected to one end of the input terminal of the low-side comparator, and removes a DC component from either a high signal or a low signal; and a threshold output unit which outputs high-side threshold DC voltage to be combined with the output of the high-side AC coupling unit, and also outputs low-side threshold DC voltage to be combined with the output of the low-side AC coupling unit.Type: GrantFiled: September 8, 2017Date of Patent: December 15, 2020Assignee: ULTRAMEMORY INC.Inventor: Naoki Ogawa
-
Patent number: 10861530Abstract: The purpose of the present invention is to achieve a system for solving a row hammer issue without significantly increasing a DRAM chip area. A semiconductor storage device comprises: a memory unit including a plurality of memory cells; an address latch unit that receives an active command and an address therefor, and latches and holds the address every time the active command is received; a refresh control unit that, when receiving a refresh command, instructs a memory access control unit to carry out a regular refresh operation while instructing the memory access control unit to carry out an interrupt refresh operation for an address near the address latched by the address latch unit; and the memory access control unit that carries out the regular refresh operation and the interrupt refresh operation for the memory unit on the basis of the instruction from the refresh control unit.Type: GrantFiled: April 8, 2016Date of Patent: December 8, 2020Assignee: Ultramemory Inc.Inventors: Yasutoshi Yamada, Ryuji Takishita
-
Patent number: 10741525Abstract: The present invention provides a semiconductor module capable of improving a bandwidth between a logic chip and a RAM. According to the present invention, a semiconductor module 1 is provided with: a logic chip; a pair of RAM units 30 each composed of a lamination-type RAM module; a first interposer 10 electrically connected to the logic chip and to each of the pair of RAM units 30; and a connection unit 40 that communicatively connects the logic chip and each of the pair of RAM units 30, wherein one RAM unit 30a is placed on the first interposer 10, and has one end portion disposed so as to overlap, in the lamination direction C, one end portion of the logic chip with the connection unit 40 therebetween, and the other RAM unit 30b is disposed so as to overlap the one RAM unit 30a with the connection unit 40 therebetween, and is also disposed along the outer periphery of the logic chip.Type: GrantFiled: June 2, 2017Date of Patent: August 11, 2020Assignee: ULTRAMEMORY INC.Inventors: Ryuji Takishita, Takao Adachi
-
Patent number: 10714151Abstract: The purposes of the present invention are: to provide a layered semiconductor device capable of improving production yield; and to provide a method for producing said layered semiconductor device. This layered semiconductor device has, layered therein, a plurality of semiconductor chips, a reserve semiconductor chip which is used as a reserve for the semiconductor chips, and a control chip for controlling the operating states of the plurality of semiconductor chips and the operating state of the reserve semiconductor chip. In such a configuration, the semiconductor chips and the reserve semiconductor chip include contactless communication units and operating switches. The semiconductor chips and the reserve semiconductor chip are capable of contactlessly communicating with another of the semiconductor chips via the contactless communication units.Type: GrantFiled: November 25, 2019Date of Patent: July 14, 2020Assignee: ULTRAMEMORY INC.Inventors: Yasutoshi Yamada, Kouji Uemura, Takao Adachi
-
Patent number: 10615850Abstract: The objective of the invention is to provide technology allowing data taking a plurality of values to be transmitted and received using one set of coils when sending data through TCI technology using magnetic field coupling. This layered semiconductor device has at least a first semiconductor chip and a second semiconductor chip layered therein, the first semiconductor chip transmitting data in a contactless manner, and the second semiconductor chip receiving, in a contactless manner, the data that has been transmitted. The first semiconductor chip contains: a transmission unit outputting a transmission signal that may acquire, on the basis of the value of the data to be sent, at least 3 types of states representing the value of the data; and a transmission coil converting the transmission signal into a magnetic field signal.Type: GrantFiled: February 18, 2016Date of Patent: April 7, 2020Assignee: ULTRAMEMORY INC.Inventors: Yuji Motoyama, Takao Adachi
-
Patent number: 10529385Abstract: A layered semiconductor device capable of improving production yield and a method for producing the layered semiconductor device. The layered semiconductor device has, layered therein, a plurality of semiconductor chips, a reserve semiconductor chip which is used as a reserve for the semiconductor chips, and a control chip for controlling the operating states of the plurality of semiconductor chips and the operating state of the reserve semiconductor chip. The semiconductor chips and the reserve semiconductor chip include contactless communication units and operating switches, and are capable of contactlessly communicating with another of the semiconductor chips via the contactless communication units. The control chip controls the operating states of the semiconductor chips by switching the operating switches of the semiconductor chips, and controls the operating state of the reserve semiconductor chip by switching the operating switch of the reserve semiconductor chip.Type: GrantFiled: December 22, 2016Date of Patent: January 7, 2020Assignee: ULTRAMEMORY INC.Inventors: Yasutoshi Yamada, Kouji Uemura, Takao Adachi
-
Patent number: 10483242Abstract: A semiconductor device of the present invention is provided with a plurality of memory chips laminated to each other, each of said memory chips having: a first transmission/reception coil for communication by means of inductive coupling; first lead-out lines led out from both ends of the first transmission/reception coil; and a first transmission/reception circuit, which is connected to the first lead-out lines, and which inputs/outputs signals to/from the first transmission/reception coil.Type: GrantFiled: February 10, 2016Date of Patent: November 19, 2019Assignee: ULTRAMEMORY INC.Inventors: Naoki Ogawa, Toshitugu Ueda, Kazuo Yamaguchi
-
Patent number: 10269734Abstract: A semiconductor element that has an element first main surface, an element second main surface that is the reverse surface from the element first main surface, and an element side surface. The semiconductor element is configured from a semiconductor substrate part and an insulating layer part and is provided with: a signal transmission/reception terminal that is provided to the element first main surface and that contacts and can transmit/receive signals to/from an external-substrate signal transmission/reception terminal that is provided to an external substrate that is external to the semiconductor element; and a signal transmission/reception coil that is provided to the element side surface and that, via the element side surface, can transmit/receive signals in a non-contact manner to/from an external-semiconductor-element signal transmission/reception part that is provided to an external semiconductor element that is external to the semiconductor element.Type: GrantFiled: July 16, 2015Date of Patent: April 23, 2019Assignee: ULTRAMEMORY INC.Inventors: Motoaki Saito, Takao Adachi
-
Publication number: 20190043537Abstract: A layered semiconductor device capable of improving production yield and a method for producing the layered semiconductor device. The layered semiconductor device has, layered therein, a plurality of semiconductor chips, a reserve semiconductor chip which is used as a reserve for the semiconductor chips, and a control chip for controlling the operating states of the plurality of semiconductor chips and the operating state of the reserve semiconductor chip. The semiconductor chips and the reserve semiconductor chip include contactless communication units and operating switches, and are capable of contactlessly communicating with another of the semiconductor chips via the contactless communication units. The control chip controls the operating states of the semiconductor chips by switching the operating switches of the semiconductor chips, and controls the operating state of the reserve semiconductor chip by switching the operating switch of the reserve semiconductor chip.Type: ApplicationFiled: December 22, 2016Publication date: February 7, 2019Applicant: ULTRAMEMORY INC.Inventors: Yasutoshi YAMADA, Kouji UEMURA, Takao ADACHI