Abstract: Recommendations for new experiments are generated via a pipeline that includes a predictive model and a preference procedure. In one example, a definition of a development task includes experiment parameters that may be varied, the outcomes of interest and the desired goals or specifications. Existing experimental data is used by machine learning algorithms to train a predictive model. The software system generates candidate experiments and uses the trained predictive model to predict the outcomes of the candidate experiments based on their parameters. A merit function (referred to as a preference function) is calculated for the candidate experiments. The preference function is a function of the experiment parameters and/or the predicted outcomes. It may also be a function of features that are derived from these quantities. The candidate experiments are ranked based on the preference function.
Type:
Grant
Filed:
August 17, 2018
Date of Patent:
January 4, 2022
Assignee:
Uncountable Inc.
Inventors:
Jason Isaac Hirshman, Noel Hollingsworth, Will Tashman