Abstract: The present invention is related to a microstrip antenna including an insulating substrate, a first conducting layer and a second conducting layer respectively located at two opposing surfaces of the insulating substrate, a non-conductive isolation zone defined in the second conducting layer, and a feed-in unit located within the con-conductive isolation zone. Thus, the non-conductive isolation zone separates the second conducting layer and the feed-in unit. During application, the feed-in unit is connected with a signal feed-in terminal, enabling the microstrip antenna to receive and transmit wireless signals. During fabrication of the microstrip antenna, it does not need to make a through hole on the insulating substrate, reducing the microstrip antenna process steps and material consumption and lowering the microstrip antenna fabrication cost.
Abstract: The present invention is related to a miniature antenna, mainly comprising a dielectric element, at least one first conductive plane, a second conductive plane, a third conductive plane, a plurality of ground terminals, and a signal feeding terminal. A part of the first conductive plane overlaps a part of the second conductive plane to form a first overlap region. A part of the first conductive plane also overlaps a part of the third conductive plane to form a second overlap region. Two resonant frequencies thus can be provided for the miniature antenna. By adjusting the sizes of overlap regions, the distances between the conductive planes, or dielectric constant of the dielectric element, the bandwidths of the two resonant frequencies may be produced to overlap each other to form a miniature antenna having a wider bandwidth.
Abstract: The present invention is related to a microstrip antenna including an insulating substrate, a first conducting layer and a second conducting layer respectively located at two opposing surfaces of the insulating substrate, a non-conductive isolation zone defined in the second conducting layer, and a feed-in unit located within the con-conductive isolation zone. Thus, the non-conductive isolation zone separates the second conducting layer and the feed-in unit. During application, the feed-in unit is connected with a signal feed-in terminal, enabling the microstrip antenna to receive and transmit wireless signals. During fabrication of the microstrip antenna, it does not need to make a through hole on the insulating substrate, reducing the microstrip antenna process steps and material consumption and lowering the microstrip antenna fabrication cost.