Patents Assigned to United Microelectronics Corp.
  • Publication number: 20250098557
    Abstract: A resistive random access memory device includes a substrate; a dielectric layer disposed on the substrate; a conductive via disposed in the dielectric layer; a metal nitride layer disposed on the conductive via, wherein the metal nitride has a gradient nitrogen concentration along a thickness direction of the metal nitride layer; a resistive switching layer disposed on the metal nitride layer; and a metal oxynitride layer disposed on the resistive switching layer, wherein the metal oxynitride layer has a gradient nitrogen concentration along a thickness direction of the metal oxynitride layer.
    Type: Application
    Filed: October 16, 2023
    Publication date: March 20, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kai-Jiun Chang, Yu-Huan Yeh, Chuan-Fu Wang
  • Publication number: 20250098333
    Abstract: An ESD guard ring structure includes numerous first fin structures, numerous second fin structures, numerous first polysilicon conductive lines, numerous second polysilicon conductive lines, numerous third polysilicon conductive lines and numerous single diffusion breaks. Each of the first fin structures includes at least one single diffusion break therein. Each of the single diffusion breaks overlaps one of the third polysilicon conductive lines.
    Type: Application
    Filed: October 16, 2023
    Publication date: March 20, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Chia-Chen Sun
  • Publication number: 20250095724
    Abstract: The invention provides a layout pattern of static random access memory (SRAM), which at least comprises a plurality of gate structures located on a substrate and spanning the plurality of fin structures to form a plurality of transistors distributed on the substrate, wherein the plurality of transistors comprise two pull-up transistors (PU), two pull-down transistors (PD) to form a latch circuit, and two access transistors (PG) connected to the latch circuit. In each SRAM memory cell, the fin structure included in the pull-up transistor (PU) is defined as a PU fin structure, the fin structure included in the pull-down transistor (PD) is defined as a PD fin structure, and the fin structure included in the access transistor (PG) is defined as a PG fin structure, wherein a width of the PD fin structure is wider than a width of the PG fin structure.
    Type: Application
    Filed: December 2, 2024
    Publication date: March 20, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Hsien Huang, Yu-Tse Kuo, Shu-Ru Wang, Li-Ping Huang, Yu-Fang Chen, Chun-Yen Tseng, Tzu- Feng Chang, Chun-Chieh Chang
  • Publication number: 20250098272
    Abstract: A method for fabricating a semiconductor device includes the steps of forming a gate structure on a substrate, forming an interlayer dielectric (ILD) layer on the gate structure, forming a contact hole in the ILD layer adjacent to the gate structure, performing a plasma doping process to form a doped layer in the ILD layer and a source/drain region adjacent to the gate structure, forming a conductive layer in the contact hole, planarizing the conductive layer to form a contact plug, removing the doped layer to form an air gap adjacent to the contact plug, and then forming a stop layer on the ILD layer and the contact plug.
    Type: Application
    Filed: December 4, 2024
    Publication date: March 20, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Wen Zhang, Kun-Chen Ho, Chun-Lung Chen, Chung-Yi Chiu, Ming-Chou Lu
  • Publication number: 20250095722
    Abstract: A random access memory, including a first gate crossing over a first doped region to constitute a write transistor, a second gate crossing over a second doped region to constitute a first read transistor, a third gate crossing over the first doped region and the second doped region to constitute a second read transistor, a metal bridge electrically connected to the second gate and the third gate, and a junction of the first source, the second gate and the third gate is a storage node.
    Type: Application
    Filed: December 4, 2024
    Publication date: March 20, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Hsiu Wu, Tsung-Hsun Wu
  • Publication number: 20250098273
    Abstract: A semiconductor device includes a gate structure on a substrate, a source/drain region adjacent to the gate structure, an interlayer dielectric (ILD) layer around the gate structure, a contact plug in the ILD layer and adjacent to the gate structure, an air gap around the contact plug, a barrier layer on and sealing the air gap, a metal layer on the barrier layer, a stop layer adjacent to the barrier layer and on the ILD layer, and an inter-metal dielectric (IMD) layer on the ILD layer. Preferably, bottom surfaces of the barrier layer and the stop layer are coplanar and top surfaces of the IMD layer and the barrier layer are coplanar.
    Type: Application
    Filed: December 4, 2024
    Publication date: March 20, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Wen Zhang, Kun-Chen Ho, Chun-Lung Chen, Chung-Yi Chiu, Ming-Chou Lu
  • Publication number: 20250098271
    Abstract: A method for fabricating a semiconductor device includes the steps of forming a gate structure on a substrate, forming an interlayer dielectric (ILD) layer on the gate structure, forming a contact hole in the ILD layer adjacent to the gate structure, performing a plasma doping process to form a doped layer in the ILD layer and a source/drain region adjacent to the gate structure, forming a conductive layer in the contact hole, planarizing the conductive layer to form a contact plug, removing the doped layer to form an air gap adjacent to the contact plug, and then forming a stop layer on the ILD layer and the contact plug.
    Type: Application
    Filed: December 4, 2024
    Publication date: March 20, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Wen Zhang, Kun-Chen Ho, Chun-Lung Chen, Chung-Yi Chiu, Ming-Chou Lu
  • Publication number: 20250098252
    Abstract: A method for fabricating a semiconductor device includes the steps of forming a metal gate on a substrate, a contact etch stop layer (CESL) adjacent to the metal gate, and an interlayer dielectric (ILD) layer around the gate structure, performing a first etching process to remove the ILD layer, performing a second etching process to remove the CESL for forming a first contact hole, and then forming a first contact plug in the first contact hole. Preferably, a width of the first contact plug adjacent to the CESL is less than a width of the first contact plug under the CESL.
    Type: Application
    Filed: October 13, 2023
    Publication date: March 20, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ke-Ting Chen, Ching-Ling Lin, Wen-An Liang, Chia-Fu Hsu
  • Publication number: 20250098253
    Abstract: A manufacturing method of the semiconductor structure including the following is provided. Gate structures are formed on a substrate. Each gate structure includes a gate, a first spacer, and a second spacer. The gate is disposed on the substrate. The first spacer is disposed on a sidewall of the gate. The second spacer is disposed on the first spacer. In a region between two adjacent gate structures, the first spacers are separated from each other, and the second spacers are separated from each other. A protective layer is formed between the two adjacent gate structures. The protective layer covers lower portions of the second spacers and exposes upper portions of the second spacers. A part of the upper portions of the second spacers is removed using the protective layer as a mask to enlarge a distance between the upper portions of the second spacers. The protective layer is removed.
    Type: Application
    Filed: November 20, 2024
    Publication date: March 20, 2025
    Applicant: United Microelectronics Corp.
    Inventor: Zhenhai Zhang
  • Publication number: 20250096000
    Abstract: A manufacturing method of a semiconductor structure includes the following steps. A first wafer is provided. The first wafer includes a first substrate and a first device layer. A second wafer is provided. The second wafer includes a second substrate and a second device layer. The second device layer is bonded to the first device layer. An edge trimming process is performed on the first wafer and the second wafer to expose a first upper surface of the first substrate and a second upper surface of the first substrate and to form a damaged region in the first substrate below the first upper surface and the second upper surface. The second upper surface is higher than the first upper surface. A first photoresist layer is formed. The first photoresist layer is located on the second wafer and the second upper surface and exposes the first upper surface and the damaged region. The damaged region is removed by using the first photoresist layer as a mask. The first photoresist layer is removed.
    Type: Application
    Filed: October 16, 2023
    Publication date: March 20, 2025
    Applicant: United Microelectronics Corp.
    Inventors: Kun-Ju Li, Hsin-Jung Liu, Jhih Yuan Chen, I-Ming Lai, Ang Chan, Wei Xin Gao, Hsiang Chi Chien, Hao-Che Hsu, Chau Chung Hou, Zong Sian Wu
  • Publication number: 20250098238
    Abstract: A semiconductor device includes a first fin-shaped structure and a second fin-shaped structure on a substrate, a bump between the first fin-shaped structure and the second fin-shaped structure, a first recess between the first fin-shaped structure and the bump, and a second recess between the second fin-shaped structure and the bump. Preferably, a top surface of the bump includes a curve concave upward, a width of the bump is greater than twice the width of the first fin-shaped structure, and a height of the bump is less than one fourth of the height of the first fin-shaped structure.
    Type: Application
    Filed: October 23, 2023
    Publication date: March 20, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Ting Chiang, Tien-Shan Hsu, Po-Chang Lin, Lung-En Kuo, Hao-Che Feng, Ping-Wei Huang
  • Patent number: 12255111
    Abstract: Provided are a multiple-level interconnect structure having a scatterometry test layer and a manufacturing method thereof. The multiple level interconnect structure includes a patterned reflective layer, a bulk reflective layer and a patterned test layer. The patterned reflective layer is disposed on a substrate and includes a first reflective pattern and a second reflective pattern separated from each other. The bulk reflective layer is disposed on the patterned reflective layer. The patterned test layer is disposed on the bulk reflective layer.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: March 18, 2025
    Assignee: United Microelectronics Corp.
    Inventors: Jia Fang Wu, Hsiang-Chieh Yen, Hsu-Sheng Huang, Zhi Jian Wang
  • Patent number: 12255245
    Abstract: A manufacturing method of a semiconductor device includes the following steps. A first transistor is formed on a substrate. The first transistor includes a first semiconductor channel structure and two first source/drain structures. The first semiconductor channel structure includes first horizontal portions and a first vertical portion. The first horizontal portions are stacked in a vertical direction and separated from one another. Each of the first horizontal portions is elongated in a horizontal direction. The first vertical portion is elongated in the vertical direction and connected with the first horizontal portions. The two first source/drain structures are disposed at two opposite sides of each of the first horizontal portions in the horizontal direction respectively. The two first source/drain structures are connected with the first horizontal portions. A top surface of the first vertical portion in and a top surface of one of the first horizontal portions are coplanar.
    Type: Grant
    Filed: February 29, 2024
    Date of Patent: March 18, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Po-Yu Yang
  • Patent number: 12256556
    Abstract: A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a first spin orbit torque (SOT) layer on the MTJ, a passivation layer around the MTJ, and a second SOT layer on the first SOT layer and the passivation layer. Preferably, a top surface of the passivation layer is lower than a top surface of the first SOT layer.
    Type: Grant
    Filed: March 4, 2024
    Date of Patent: March 18, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hung-Chan Lin, Yu-Ping Wang
  • Publication number: 20250087559
    Abstract: A TSV structure includes a substrate. A through via penetrates the substrate. A copper layer fills the through via. A trench is embedded in the substrate and surrounds the copper layer, and a material layer fills the trench. The material layer includes W, Cr, Ir, Re, Zr, SiOC glass, hydrogen-containing silicon oxynitride, silicon oxide or spin-on glass.
    Type: Application
    Filed: October 18, 2023
    Publication date: March 13, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, I-Fan Chang, Jia-Rong Wu
  • Publication number: 20250089334
    Abstract: A semiconductor includes a substrate. A gate structure is disposed on the substrate. A liner oxide contacts a side of the gate structure. A silicon oxide spacer contacts the liner oxide. An end of the silicon oxide spacer forms a kink profile. A silicon nitride spacer contacts the silicon oxide spacer and a tail of the silicon nitride spacer covers part of the kink profile. A stressor covers the silicon nitride spacer and the substrate.
    Type: Application
    Filed: October 13, 2023
    Publication date: March 13, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Fan Li, Chen-Ming Wang, Po-Ching Su, Pei-Hsun Kao, Ti-Bin Chen, Chun-Wei Yu, Chih-Chiang Wu
  • Publication number: 20250089281
    Abstract: Provided are a semiconductor structure and a manufacturing method thereof. The semiconductor structure includes a substrate including a fin portion, first and second doped regions having a first conductive type, first and second contacts, and first and second metal silicide layers. The fin portion protrudes from a surface of the substrate. The first doped region is disposed in the fin portion. The second doped region is disposed in the fin portion and connected to the first doped region. A doping concentration of the second doped region is greater than that of the first doped region. The first contact is disposed on the first doped region. The second contact is disposed on the second doped region. The first metal silicide layer is disposed between the first contact and the first doped region. The second metal silicide layer is disposed between the second contact and the second doped region.
    Type: Application
    Filed: October 15, 2023
    Publication date: March 13, 2025
    Applicant: United Microelectronics Corp.
    Inventors: Wen-Kai Lin, Sheng-Yuan Hsueh, Kuo-Hsing Lee, Chih-Kai Kang
  • Publication number: 20250089349
    Abstract: A structure with a capacitor and a fin transistor includes a substrate. The substrate includes a capacitor region and a fin transistor region. A mesa is disposed within the capacitor region of the substrate. The mesa protrudes from a surface of the substrate. The mesa includes a top surface and two sloping surfaces. Each of the sloping surfaces connects to the top surface of the mesa and the surface of the substrate. A doping region is disposed within the mesa. A capacitor electrode is only disposed on the top surface. A capacitor dielectric layer is disposed between the capacitor electrode and the doping region.
    Type: Application
    Filed: October 19, 2023
    Publication date: March 13, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Chun-Hao Lin
  • Publication number: 20250089448
    Abstract: An organic light-emitting diode display device includes a first light-emitting layer, a first anode, a first reflective pattern, and a dielectric material. The first light-emitting layer, the first anode, and the first reflective pattern are located in a first sub-pixel region. The first anode is disposed under the first light-emitting layer in a vertical direction, and the first reflective pattern is disposed under the first anode in the vertical direction. The dielectric material is partly disposed between the first anode and the first reflective pattern, and the first reflective pattern is electrically connected with the first anode.
    Type: Application
    Filed: October 19, 2023
    Publication date: March 13, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yen-Tsai Yi, Wei-Chuan Tsai, Jin-Yan Chiou, Hsiang-Wen Ke
  • Patent number: 12249658
    Abstract: A control gate is formed on the substrate. A source diffusion region is formed in the substrate and on a first side of the control gate. A select gate is formed on the source diffusion region. The select gate has a recessed top surface. A charge storage structure is formed under the control gate. A first spacer is formed between the select gate and the control gate and between the charge storage structure and the select gate. A wordline gate is formed on a second side of the control gate opposite to the select gate. A second spacer is formed between the wordline gate and the control gate. A drain diffusion region is formed in the substrate and adjacent to the wordline gate.
    Type: Grant
    Filed: February 19, 2024
    Date of Patent: March 11, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Sung Huang, Chi Ren