Patents Assigned to United States of America, as represented by the Secretary, Department of Health and Human Services
  • Patent number: 12270738
    Abstract: Disclosed herein are compositions for fixing tissue for cytologic, histomorphologic, and/or molecular analysis (e.g., DNA, RNA, and/or protein analysis). In some embodiments, the fixatives are aldehyde-free fixatives, for example, formaldehyde- or formalin-free fixatives. Particular disclosed compositions include buffered ethanol. The buffer is a phosphate buffer or phosphate buffered saline (PBS) in some examples. In further embodiments, the fixative includes additional components, such as glycerol and/or acetic acid.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: April 8, 2025
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Stephen M. Hewitt, Joon-Yong Chung, Candice D. Perry, Robert A. Star
  • Patent number: 12270814
    Abstract: Biomarkers tests which can be used to predict a positive or negative risk of preeclampsia are described. More specifically, a panel of biomarkers including MMP-7 and gpIIbIIIa, described. The test is useful to predict preeclampsia when a biological sample is obtained between the 16th and 22nd week of pregnancy. Prediction later in pregnancy can be achieved by a combination of Siglec-6, Activin A, ALCAM, and/or FCN2.
    Type: Grant
    Filed: October 6, 2023
    Date of Patent: April 8, 2025
    Assignees: Wayne State University, The United States of America, as Represented by the Secretary, Department of Health & Human Services
    Inventors: Adi L. Tarca, Piya Chaemsaithong, Tinnakorn Chaiworapongsa, Sonia S. Hassan, Roberto Romero
  • Patent number: 12269155
    Abstract: The present disclosure provides methods and compositions for inducing an immune response that confers dual protection against infections by either or both of a rabies virus and a coronavirus, and/or which can be used therapeutically for an existing infection with rabies virus and/or a coronavirus to treat at least one symptom thereof and/or to neutralize or clear the infecting agents. In particular, the present disclosure provides a recombinant rabies virus vector comprising a nucleotide sequence encoding at least one coronavirus immunogenic glycoprotein fragment, as well as pharmaceutical compositions comprising the vaccine vectors.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: April 8, 2025
    Assignees: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES, Thomas Jefferson University, University of Maryland, Baltimore
    Inventors: Reed F. Johnson, Matthias Schnell, Lisa E. Hensley, Christoph Wirblich, Christopher M. Coleman, Matthew S. Frieman
  • Patent number: 12269872
    Abstract: Antibodies and antigen binding fragments that specifically bind to P. falciparum circumsporozoite protein are disclosed. Nucleic acids encoding these antibodies, vectors and host cells are also provided. The disclosed antibodies, antigen binding fragments, nucleic acids and vectors can be used, for example, to inhibit a P. falciparum infection.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: April 8, 2025
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Robert Seder, Lawrence Wang, Rachel Vistein, Joseph Francica
  • Patent number: 12268700
    Abstract: Disclosed is a compound of the formula (I) or (II): wherein a f are as described herein. The compounds are useful in the activation of Type II NKT cells and in treating cancer.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: April 8, 2025
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, University of Connecticut
    Inventors: Lise H. Pasquet, Jay A. Berzofsky, Amy R. Howell, Masaki Terabe, Kaddy Camara, Stewart K. Richardson
  • Patent number: 12268737
    Abstract: Vaccines that elicit broadly protective anti-influenza antibodies. Some vaccines comprise nanoparticles that display HA trimers from influenza virus on their surface. The nanoparticles are fusion proteins comprising a monomeric subunit (e.g., ferritin) joined to the stem region of an influenza HA protein. The fusion proteins self-assemble to form the HA-displaying nanoparticles. The vaccines comprise only the stem region of an influenza HA protein joined to a trimerization domain. Also provided are fusion proteins, and nucleic acid molecules encoding such proteins, and assays using nanoparticles of the invention to detect anti-influenza antibodies.
    Type: Grant
    Filed: April 26, 2024
    Date of Patent: April 8, 2025
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Secretary, Department of Health and Human Services
    Inventors: John R. Mascola, Jeffrey C. Boyington, Hadi M. Yassine, Peter D. Kwong, Barney S. Graham, Masaru Kanekiyo
  • Publication number: 20250095390
    Abstract: A method is provided for non-invasively predicting characteristics of one or more cells and cell derivatives. The method includes training a machine learning model using at least one of a plurality of training cell images representing a plurality of cells and data identifying characteristics for the plurality of cells. The method further includes receiving at least one test cell image representing at least one test cell being evaluated, the at least one test cell image being acquired noninvasively and based on absorbance as an absolute measure of light, and providing the at least one test cell image to the trained machine learning model. Using machine learning based on the trained machine learning model, characteristics of the at least one test cell are predicted. The method further includes generating, by the trained machine learning model, release criteria for clinical preparations of cells based on the predicted characteristics of the at least one test cell.
    Type: Application
    Filed: May 13, 2024
    Publication date: March 20, 2025
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Kapil Bharti, Nathan A. Hotaling, Nicholas J. Schaub, Carl G. Simon
  • Patent number: 12251432
    Abstract: Disclosed herein are immunogenic compositions for preventing or treating infection with filarial parasites and biomarkers for diagnosing infection with filarial parasites.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: March 18, 2025
    Assignees: New York Blood Center, Inc., The United States of America, as Represented by the Secretary, Department of Health and Human Services
    Inventors: Sara Lustigman, Thomas B. Nutman, Sasisekhar Bennuru
  • Patent number: 12247250
    Abstract: The present invention relates to the rapid and electricity-free, point-of-care, multiplexed detection and quantification of at least one or more nucleic acid sequences from nucleic acids corresponding to a plurality of pathogens or biomarkers using a micropatterned lateral flow device. Rapid and molecular-level sensitive differential diagnosis of a disease condition may be enabled without the need for a delayed laboratory test so that timely treatment can be administered.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: March 11, 2025
    Assignees: GODX, INC, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH & HUMAN SERVICES
    Inventors: Chang Hee Kim, Wendy A. Henderson, Sarah K. Abey, Nicolaas H. Fourie, Eric G. Ferguson
  • Patent number: 12239654
    Abstract: The present invention relates to compounds and methods of use thereof for treatment of certain disorders and conditions, for example brain injuries such as stroke or traumatic brain injuries.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: March 4, 2025
    Assignees: Astrocyte Pharmaceuticals, Inc., Board of Regents, The University of Texas System, The United States of America, as Represented by the Secretary, Department of Health and Human Services
    Inventors: William S. Korinek, James D. Lechleiter, Theodore E. Liston, Kenneth A. Jacobson
  • Patent number: 12233124
    Abstract: Metapneumovirus (MPV) F proteins stabilized in a prefusion conformation, nucleic acid molecules and vectors encoding these proteins, and methods of their use and production are disclosed. In several embodiments, the MPV F proteins and/or nucleic acid molecules can be used to generate an immune response to MPV in a subject. In additional embodiments, the therapeutically effective amount of the MPV F ectodomain trimers and/or nucleic acid molecules can be administered to a subject in a method of treating or preventing MPV infection.
    Type: Grant
    Filed: September 6, 2023
    Date of Patent: February 25, 2025
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Institute for Research in Biomedicine
    Inventors: Peter Kwong, Michael Gordon Joyce, Baoshan Zhang, Yongping Yang, Peter Collins, Ursula Buchholz, Davide Corti, Antonio Lanzavecchia, Guillaume Stewart-Jones
  • Patent number: 12233051
    Abstract: The disclosure provides methods of treating a patient having primary hyperoxaluria or idiopathic hyperoxaluria comprising administering a therapeutically effective amount of compound of the formula and pharmaceutically acceptable salts, solvates, and hydrates thereof to the patient. The variables, e.g. ring A, n, R, R3, R10, X, Y, and Z are defined herein. These compounds act as lactate dehydrogenase inhibitors and are useful inhibiting the conversion of glyoxylate to oxalate. When administered to a patient having a disease or disorder associated with elevated oxalate levels, such as PH type 1, type 2, or type 3 or idiopathic hyperoxaluria the compounds prevent or substantially reduce the amount and buildup of oxalate the patient's kidneys, bladder, urinary tract and other parts of the patient's body.
    Type: Grant
    Filed: July 14, 2023
    Date of Patent: February 25, 2025
    Assignees: VANDERBILT UNIVERSITY, THE UAB RESEARCH FOUNDATION, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES
    Inventors: Matthew Hall, Daniel J. Urban, John Knight, Ross Holmes, Kyle David Wood, Alex Waterson, Victor M. Darley-Usmar, Leonard M. Neckers
  • Patent number: 12227554
    Abstract: Disclosed are methods of selectively expanding a number of T cells. The methods may comprise: modifying human T cells to express a TCR, wherein the TCR comprises a murine constant region; producing a population of cells comprising a number of human T cells expressing the TCR and a number of human T cells not expressing the TCR; and culturing the population of cells in the presence of (i) irradiated feeder cells, (ii) one or more cytokines, and (iii) an antibody, or an antigen-binding portion thereof, wherein the antibody has antigenic specificity for the murine constant region of the TCR, so as to selectively expand the number of T cells expressing the TCR over the number of T cells not expressing the TCR. Also disclosed are related populations of cells, pharmaceutical compositions, and methods of treating or preventing cancer.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: February 18, 2025
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Drew C. Deniger, Steven A. Feldman, Steven A. Rosenberg
  • Publication number: 20250049952
    Abstract: Polynucleotide expression cassettes comprising synthetic polynucleotides encoding human propionyl-CoA carboxylase alpha (synPCCA) are described herein. Related recombinant expression vectors, recombinant adeno-associated viruses (rAAVs), and compositions are also described. Also described are methods of treating a disease or condition mediated by propionyl-CoA carboxylase, comprising administering to a subject in need thereof a therapeutic amount of any of the polynucleotide expression cassettes, recombinant expression vectors, rAAVs, or compositions.
    Type: Application
    Filed: December 29, 2022
    Publication date: February 13, 2025
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Charles P. Venditti, Randy J. Chandler
  • Patent number: 12221627
    Abstract: Disclosed are methods of obtaining a cell population enriched for T cells having antigenic specificity for a cancer-specific mutation using in vitro stimulation of memory T cells. Also disclosed are related methods of isolating a T cell receptor (TCR), populations of cells, TCRs or antigen-binding portions thereof, pharmaceutical compositions, and methods of treating or preventing cancer.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: February 11, 2025
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Gal Cafri, Steven A. Rosenberg
  • Patent number: 12215349
    Abstract: Disclosed are methods of preparing thymic emigrant cells in vitro, isolated or purified thymic emigrant cells prepared by the methods, and pharmaceutical compositions comprising the same. Further disclosed are methods of treating or preventing a condition in a mammal comprising administering the thymic emigrant cells or pharmaceutical compositions comprising the same to the mammal.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: February 4, 2025
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Raul E. Vizcardo, Nicholas D. Klemen, Nicholas P. Restifo
  • Patent number: 12215164
    Abstract: Disclosed is a molecule comprising: (a) a first domain, which comprises a targeting moiety; (b) a second domain, which comprises an albumin binding domain (ABD), (c) a third domain, which comprises a furin cleavage sequence (“FCS”), which FCS is cleavable by furin; and (d) a fourth domain, which comprises an optionally substituted Domain III from Pseudomonas exotoxin A (“PE”). Related nucleic acids, recombinant expression vectors, host cells, populations of cells, pharmaceutical compositions, methods of producing the molecule, methods of treating or preventing cancer in a mammal, and methods of inhibiting the growth of a target cell are also disclosed.
    Type: Grant
    Filed: September 20, 2023
    Date of Patent: February 4, 2025
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Ira H. Pastan, Junxia Wei, Masanori Onda, Tapan Bera, Mitchell Ho
  • Publication number: 20250034244
    Abstract: An embodiment of the invention provides chimeric antigen receptor (CAR) amino acid constructs. Nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions relating to the CAR constructs are disclosed. Methods of detecting the presence of cancer in a mammal and methods of treating or preventing cancer in a mammal are also disclosed. Methods of making the CAR constructs are disclosed.
    Type: Application
    Filed: April 24, 2024
    Publication date: January 30, 2025
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Haiying Qin, Crystal L. Mackall, Terry J. Fry
  • Patent number: 12208093
    Abstract: The present invention relates to the field of virology. More specifically, the present invention provides methods and compositions useful for prevention and treatment of human cytomegalovirus (CMV). In one embodiment, a pharmaceutical composition comprises (a) emetine or a derivative thereof; (b) a human cytomegalovirus (HCMV) drug; and (c) a pharmaceutically acceptable carrier. In certain embodiments, the pharmaceutical composition further comprises an adjuvant. In a specific embodiment, the HCMV drug is ganciclovir. In such embodiments, emetine is present at about 1/10 to about 1/100 the normal dosage for amebiasis.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: January 28, 2025
    Assignees: The Johns Hopkins University, THE UNITED STATES OF AMERICA, represented by the Secretary, Department of Health and Human Services
    Inventors: Ravit Boger, Marc Ferrer, Juan Marugan, Andres Dulcey Garcia, Noel Terrence Southall, Xin Hu
  • Patent number: 12210017
    Abstract: Methods of identifying a subject with a Filovirus infection are provided herein. In some embodiments, the method comprises contacting a biological sample containing antibodies from the subject with one or more peptides comprising amino acid sequences of selected Filovirus epitopes, detecting the presence or absence of an immune complex of antibodies from the biological sample with the one or more peptides; and wherein the presence of the immune complex identifies the subject as having Filovirus infection and the absence of the immune complex identifies the subject as not having Filovirus infection. Further provided are isolated peptides for use in such methods, as well as a solid support linked to one or more of the disclosed peptides.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: January 28, 2025
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventor: Surender Khurana