Patents Assigned to United States of America as represented by the Secretary of Air Force
  • Patent number: 11780779
    Abstract: The present disclosure includes a system and method for monitoring degradation of a high temperature composite component (HTC). The HTC is defined by a volume that includes a matrix material and a fiber formed from at least one of ceramic and carbon material. One or more electrical conductors are disposed within the volume and connected directly or indirectly to a monitoring system.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: October 10, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Zlatomir D. Apostolov
  • Patent number: 11780780
    Abstract: A method of manufacturing a coated reinforcing fiber for use in Ceramic Matrix Composites, the method comprising pre-oxidizing a plurality of silicon-based fibers selected from the group consisting of silicon carbide (SiC) fibers, silicon nitride (Si3N4) fibers, SiCO fibers, SiCN fibers, SiCNO fibers, and SiBCN fibers at between 700 to 1300 degrees Celsius in an oxidizing atmosphere to form a silica surface layer on the plurality of silicon-based fibers, forming a plurality of pre-oxidized fibers; applying a rare earth orthophosphate (REPO4) coating to the plurality of pre-oxidized fibers; and heating the plurality of REPO4 coated pre-oxidized fibers at about 1000-1500 degrees Celsius in an inert atmosphere to react the REPO4 with the silica surface layer to form a rare earth silicate or disilicate. The pre-oxidizing step may be 0.5 hours to about 100 hours. The heating step may be about 5 minutes to about 100 hours.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: October 10, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Emmanuel E Boakye, Michael K Cinibulk, Randal S Hay, Pavel Mogilevsky, Triplicane A Parthasarathy, Kristin A Keller
  • Patent number: 11782264
    Abstract: The systems and methods provided herein are directed to a flight motion simulator. The target axes are replaced by a system of Risley pairs. Light is projected to the unit under testing at a range of angles by rotating elements within the Risley pairs.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: October 10, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Joshua K Lentz
  • Patent number: 11782039
    Abstract: A method for reducing the variability, as measured by relative standard deviation (RSD), of an analytical testing technique is provided. This improvement in RSD improves the confidence in the values obtained during field testing. The method includes incorporating a focusing agent into the sampling media, which permits providing sampling media such as thermal desorption tubes preloaded with the focusing agent.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: October 10, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: H. Mitchell Rubenstein
  • Patent number: 11772812
    Abstract: A cover for an aircraft opening or equipment formed from a collapsible material having programmable magnets encapsulated on at least one edge portion to adhere the cover to an aircraft surface is provided. The programmable magnets have a close field strength sufficient to maintain the cover in place during high winds while not damaging the aircraft surface coatings during installation and removal while not interfering with electric signals or nearby electrical equipment.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: October 3, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Daniel Robert Caban, II
  • Patent number: 11768384
    Abstract: A cycloidal diffractive waveplate based star simulator generates a star field with very high precision star locations and accurate brightness. The present disclosure provides a star simulator that allows for a large FOV, modular, multi-star simulator capable of very high precision dynamic star locations for testing of high accuracy, large FOV star trackers. The system is composed of a light source, a polarization grating-based image [1], and an opto-mechanical system for steering the light. The light is projected onto a diffuse screen where the light is scattered, creating a functional point source at the screen. A star tracker or other device under test views the screen which has a multitude of projected spots (each with its own light source and beam steering device) positioned in a star field distribution appropriate for the simulated viewing direction.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: September 26, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Joshua Lentz
  • Patent number: 11770347
    Abstract: A dynamic heterogeneous network for transmitting media. The network has plural sources sending signals through various links and routers to plural destinations. Upon identifying a bottleneck link the network matches actual demand rate to actual service rate. A buffer setpoint is established to accommodate the difference between the demand rate and the service rate. The network determines an epoch having a penalty for deviation from the buffer setpoint. The rate allowance is reallocated to reduce the media bottleneck.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: September 26, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Khanh Dai Pham
  • Patent number: 11769604
    Abstract: A deformable yet mechanically resilient microcapsule having electrical properties, a method of making the microcapsules, and a circuit component including the microcapsules. The microcapsule containing a gallium liquid metal alloy core having from about 60 to about 100 wt. % gallium and at least one alloying metal, and a polymeric shell encapsulating the liquid core, said polymeric shell having conductive properties.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: September 26, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Brad L Cumby, Christopher Tabor
  • Patent number: 11761115
    Abstract: A method of performing heteroepitaxy comprises exposing a substrate to a carrier gas, a first precursor gas, a Group II/III element, and a second precursor gas, to form a heteroepitaxial growth of one of GaAs, AlAs, InAs, GaP, InP, ZnSe, GaSe, CdSe, InSe, ZnTe, CdTe, GaTe, HgTe, GaSb, InSb, AlSb, CdS, GaN, and AlN on the substrate; wherein the substrate comprises one of GaAs, AlAs, InAs, GaP, InP, ZnSe, GaSe, CdSe, InSe, ZnTe, CdTe, GaTe, HgTe, GaSb, InSb, AlSb, CdS, GaN, and AlN; wherein the carrier gas is Hz, wherein the first precursor is HCl, the Group II/III element comprises at least one of Zn, Cd, Hg, Al, Ga, and In; and wherein the second precursor is one of AsH3 (arsine), PH3 (phosphine), H2Se (hydrogen selenide), H2Te (hydrogen telluride), SbH3 (hydrogen antimonide), H2S (hydrogen sulfide), and NH3 (ammonia). The process may be an HVPE (hydride vapor phase epitaxy) process.
    Type: Grant
    Filed: October 4, 2022
    Date of Patent: September 19, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Vladimir Tassev
  • Patent number: 11761116
    Abstract: A method of performing HVPE heteroepitaxy comprises exposing a substrate to a carrier gas, a first precursor gas, a Group II/III element, and ternary-forming gasses (V/VI group precursor), to form a heteroepitaxial growth of a binary, ternary, and/or quaternary compound on the substrate; wherein the carrier gas is H2, wherein the first precursor gas is HCl, the Group II/III element comprises at least one of Zn, Cd, Hg, Al, Ga, and In; and wherein the ternary-forming gasses comprise at least two or more of AsH3 (arsine), PH3 (phosphine), H2Se (hydrogen selenide), H2Te (hydrogen telluride), SbH3 (hydrogen antimonide, or antimony tri-hydride, or stibine), H2S (hydrogen sulfide), NH3 (ammonia), and HF (hydrogen fluoride); flowing the carrier gas over the Group II/III element; exposing the substrate to the ternary-forming gasses in a predetermined ratio of first ternary-forming gas to second ternary-forming gas (1tf:2tf ratio); and changing the 1tf:2tf ratio over time.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: September 19, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Vladimir Tassev
  • Patent number: 11761740
    Abstract: A drone disabling device includes a plurality of streamer launch tubes having at least one streamer device positioned therein. A barrel housing is configured to hold the plurality of launch tubes within streamer launch barrels. An ignition system is configured to ignite propellant within the launch tubes and launch the streamer devices from the barrel housing such that one or more propellers of a hostile drone will become entangled and disabled. A parachute connected to the streamer device is deployed as the drone descends to protect people and property on the ground and to preserve the drone for intelligence gathering after landing.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: September 19, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Adam Wilmer, Derrick Jochmans, Matthew Fleckenstein, James Westfall, James Roberts, Nicholas Pingel, Michael Anderson
  • Patent number: 11761369
    Abstract: An air cooled machine is formed with a housing and a plurality of heat rejecting fins with a heat pipe system disposed therein. The heat pipe system includes a primary passageway and a plurality of leg passageways extending through the housing and into each fin. A working fluid is disposed within the heat pipe system and is operable to receive heat from a heat source, change material phase at a threshold temperature and transfer the heat through the fins to a surrounding atmosphere.
    Type: Grant
    Filed: October 12, 2022
    Date of Patent: September 19, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Mitchell Sanders, Gregory Minkiewicz
  • Patent number: 11754547
    Abstract: A biorecognition element for rapid detection of fuel biocontamination. The biorecognition element is a biorecognition element selected from SEQ. ID No. 2 through SEQ. ID No. 24, SEQ. ID No. 22 through SEQ. ID No. 44, SEQ. ID No. 46 through SEQ. ID No. 57, SEQ. ID No. 59 through SEQ. ID No. 196 or SEQ. ID No. 198 through SEQ. ID No. 332.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: September 12, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Oscar N. Ruiz, Thusitha S Gunasekera, Osman Radwan
  • Patent number: 11754799
    Abstract: A tunable optical filter for a detector is presented including a plate having a top side and a bottom side. The plate has material properties making it transparent to a range of optical frequencies. A transparent metasurface is proximate the top side of the plate. The transparent metasurface is configured to have a transmissive pass band and a stop band. An undercarriage support structure is proximate the bottom side of the plate. The undercarriage support is responsive to photothermal heating. The undercarriage support is configured to deform from the photothermal heating caused by an undesired signal thereby shifting the stop band in frequency toward the undesired signal to block reception of the undesired signal by the detector.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: September 12, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Harris J Hall, David Torres Reyes, Michael E McConney
  • Patent number: 11747115
    Abstract: An integrated airspace defense system for identifying and locating a suspicious unmanned aerial vehicle. The system including at least one detection device to monitor the air space and provide a detection information; a computer to process the detection information and identifying the presence of suspicious unmanned aerial vehicles (UAVs) using a sequence of detection algorithms. The integrated airspace defense system identifies and locates the suspicious UAV. In at least one embodiment the integrated airspace defense system is capable of capturing or destroying the suspicious UAV.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: September 5, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: William Indelicato, Melvin White, David Feibus, Meghan Berlingo, David Beargie, Nicholas Martin
  • Patent number: 11747434
    Abstract: Detection of a radar target from a received radar signal includes computing a vector of filter weights dependent upon a steering vector and determining a threshold value dependent upon a designated probability of false alarm. The vector of filter weights is applied to samples of the received radar signal at a test cell, corresponding to a test range, to provide a filtered test signal and a test power of the filtered test signal is computed. The weights are also applied to samples of the received radar signal at a number of reference cells, to produce filtered reference signals. A reference power is computed from the filtered reference signals and the radar target is detected at the test range when a ratio of the test power to the reference power exceeds the threshold value.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: September 5, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Ramachandran S. Raghavan
  • Patent number: 11738322
    Abstract: The present invention relates to a microfluidic flow process for making polymers, polymers made by such processes, and methods of using such polymers. In such process, a novel reagent delivery setup is used in conjunction with microfluidic reaction technology to synthesize anionic polymerization reaction products from superheated monomer orders of magnitude faster than is possible in batch and continuous syntheses. The aforementioned process does not require the cryogenic temperatures which are required for such syntheses in batch or bulk continuous. Thus the aforementioned process is more economically efficient and reduces the environmental impact of linear polymer production.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: August 29, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Kamran B. Ghiassi, Neil D. Redeker
  • Patent number: 11742711
    Abstract: A unique rotor assembly for an electrical machine is disclosed herein. The rotor assembly includes a shaft having an axis of rotation extending within the electrical machine. A central support is connected to the shaft at an intermediate position and a pair of opposing end plates are configured to clamp a plurality of laminate plates therebetween. The laminate plates and a sidewall of the end plates have a non-linear cross-sectional shape such that radial loading due to centrifugal force is transmitted from the laminate plates to the end plates during operation.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: August 29, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Zafer Turgut
  • Patent number: 11734422
    Abstract: The present invention relates to core shell liquid metal encapsulates comprising multi-functional ligands, networks comprising such encapsulates and processes of making and using such encapsulates and networks. When subjected to strain, such network's conductivity is enhanced, thus allowing the network to serve as a healing agent that restores at least a portion of the conductivity in an adjacent conductor.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: August 22, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Carl J. Thrasher, Christopher E. Tabor, Zachary J. Farrell, Nicholas J. Morris
  • Patent number: 11723469
    Abstract: An ergonomic method for working in confined work spaces is disclosed. The method, in some cases, includes the steps of: a) providing a support structure that is generally in the configuration of a rectangular prism having six faces, a length, width, and a height in which the length, width, and height differ from one another so that the structure provides three different height positions when the support structure is placed on the floor of the workspace; b) placing the support structure with one of its faces in contact with a contoured floor surface in a confined work space; and c) sitting or standing on the support structure.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: August 15, 2023
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Eric Fowler, Michael Hayes, Kevin Eversley