Patents Assigned to United States of America as represented by the Secretary of Commerce
  • Patent number: 10156771
    Abstract: An optical parametric oscillator produces optical parametric light and includes a frequency splitter to produce signal light and idler light; a wavelength selector to select a wavelength of the signal light and to produce optical parametric light from the selected wavelength of the signal light; and an optical frequency doubler to double an optical frequency of the optical parametric light.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: December 18, 2018
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: John T. Woodward, IV, Steven W. Brown, Keith R. Lykke
  • Patent number: 10151681
    Abstract: An optofluidic flow meter to determine a rate of fluid flow in a flow member includes: the flow member; a primary fluid conduit disposed in the flow member and that receives a fluid; a secondary fluid conduit disposed in the flow member; and a fiber optic comprising a fiber Bragg grating interposed between a first flow region of the primary fluid conduit and a second flow region of the secondary fluid conduit and that: physically distorts relative to a pressure differential between the primary fluid conduit and the secondary fluid conduit; and produces a shift in a Bragg wavelength in response to a physical distortion due to the pressure differential.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: December 11, 2018
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Zeeshan Ahmed, Gregory A. Cooksey
  • Patent number: 10152666
    Abstract: An authentication article includes: a substrate including: a first surface; a second surface disposed laterally to the first surface and at a depth below the first surface; and a plurality of indentations including the depth at the second surface of the substrate; and an array disposed on the substrate and including a plurality of analytes, the analytes being disposed in the indentations at a depth below a first surface of the substrate and provided to emit an authentication signature in response to being subjected to a probe stimulus. A process for authenticating the authentication article includes: providing the authentication article; subjecting the analytes to a probe stimulus; acquiring a response from the plurality of analytes in response to being subjected to the probe stimulus; and determining whether the response is the authentication signature to authenticate the, wherein the authentication article is not authenticated if the response is not the authentication signature for the array.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: December 11, 2018
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Yaw S. Obeng, Joseph J. Kopanski, Jung-Joon Ahn
  • Patent number: 10127393
    Abstract: A computer-implemented method included: receiving, by an access manager, a query from a source; communicating the query from the access manager to a translator; translating the query into a next generation access control (NGAC) input; communicating the NGAC input to an NGAC engine, the NGAC engine including access control data; receiving the NGAC input; determining an authorization response; communicating the authorization response to the translator; translating the authorization response into a response statement; communicating the response statement to the access manager; communicating, if the response statement comprises a permitted statement: a permitted query to a database from the access manager, the permitted query comprising a data operation; and performing the data operation on data in the database; and blocking access by the source to data in the database if the response statement comprises a deny statement.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: November 13, 2018
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: David Ferraiolo, Serban Gavrila, Gopi Katwala, Joshua Roberts
  • Patent number: 10079467
    Abstract: An optomechanical laser includes: a basal member; a mechanical transducer; a laser disposed on the mechanical transducer, the laser being displaced along the displacement axis in response to a displacement of the mechanical transducer relative to the basal member; a mirror disposed on the armature in optical communication with the laser and opposing the laser; the armature disposed on the basal member and rigidly connecting the mirror to the basal member such that the mirror and the armature move in synchrony with the basal member, and the armature provides a substantially constant distance between the basal member and the mirror; and a cavity comprising: the laser; the mirror; and a cavity length between the laser and the mirror that changes in response to displacement of the laser according to the displacement of the mechanical transducer relative to the basal member, the optomechanical laser providing laser light.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: September 18, 2018
    Assignees: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE, UNIVERSITY OF MARYLAND
    Inventors: Felipe Guzman, Jacob M. Taylor, Jon R. Pratt
  • Patent number: 10073026
    Abstract: A process for optically sorting a plurality of particles includes: providing a particle receiver; producing particles; receiving the particles by the particle receiver; receiving a light by the particle receiver; producing a standing wave optical interference pattern in an optical interference site of the particle receiver from the light; subjecting the particles to an optical gradient force from the standing wave optical interference pattern; deflecting the particles into a plurality of deflected paths to form the sorted particles from the particles; and propagating the sorted particles from the optical interference site through the deflected paths to optically sort the particles.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: September 11, 2018
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: John J. Curry, Zachary H. Levine
  • Patent number: 10067088
    Abstract: Gradient elution isotachophoretic apparatus, and systems for performing gradient elution isotachophoresis to separate, purify, concentrate, quantify, and/or extract charged analytes from a sample. The isotachophoretic apparatus include an electrophoretic assembly, a sampling assembly connected to the electrophoretic assembly, and/or a support structure connected to the electrophoretic assembly and/or to the sampling assembly. The system includes an isotachophoretic apparatus, and a controller communicatively coupled to the isotachophoretic apparatus. The controller includes a storage medium and a processor for executing computer readable and executable instructions.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: September 4, 2018
    Assignees: Applied Research Associates, Inc., The United States of America, as Represented by the Secretary of Commerce National Institute of Standards and Technology
    Inventors: Alyssa Henry, Christopher Konek, David Ross, Elizabeth Strychalski
  • Patent number: 10067050
    Abstract: A linear absorption spectrometer includes: a laser light source that provides mid-infrared laser light; a high finesse optical resonator that includes: a sample cell operating at a temperature from 220 K to 300 K during linear absorption of mid-infrared laser light by radiocarbon and including: a linear absorption optical path length greater than a kilometer; a first zero-pressure difference mirror mount on which a first supermirror is disposed; a second zero-pressure difference mirror mount on which a second supermirror is disposed; an optical switch interposed between the laser light source and the high finesse optical resonator that modulates and communicates mid-infrared laser light to the high finesse optical resonator; a photoreceiver that receives cavity ring down light and includes a noise equivalent power that is less than a shot noise limit of cavity ring down light.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: September 4, 2018
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Adam J. Fleisher, David A. Long, Joseph T. Hodges
  • Patent number: 10060946
    Abstract: An electron vibrometer includes: an electron source providing a beam of primary electrons; a cantilever including: a receiver portion including: a gradient in thickness, a gradient in mass, atomic number of constituent atoms, or a combination thereof, the cantilever being disposed relative to the electron source such that the receiver portion of the cantilever receives the beam of primary electrons, and produces a plurality of scattered electrons from the receiver portion in response to receipt of the beam of primary electrons; and a charged particle detector that receives the plurality of scattered electrons from the receiver portion, and produces a detector signal comprising an amplitude that varies in relation to the gradient subject to receipt of the primary electrons, and the detector signal providing determination of the displacement of the cantilever.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: August 28, 2018
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Taylor J. Woehl, Ryan B. Wagner, Jason Killgore, Robert Keller
  • Patent number: 10054286
    Abstract: An optical transformer includes: an optomechanical member configured: to receive incident light; and to produce primary light from the incident light including an initial propagation that includes a nonlinear scan; and a lens configured: to receive the primary light from the optomechanical member; to linearize the nonlinear scan; and to produce secondary light including a final propagation that comprises a linear scan, such that the optical transformer is configured to transform the nonlinear scan of the primary light to the linear scan of the secondary light.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: August 21, 2018
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE, THE NATIONAL INSITUTE OF STANDARDS AND TECHNOLOGY
    Inventors: Christopher M. Brown, John T. Melcher, Stephan J. Stranick
  • Patent number: 10050608
    Abstract: A phase modulation (PM) noise reducer to reduce phase modulation noise of an oscillator, the PM noise reducer including: an amplitude modulation (AM) detector to receive a primary oscillator signal and to produce an AM detector signal based on the primary oscillator signal, the primary oscillator signal including a first phase modulation (PM) noise; a control circuit in electrical communication with the AM detector to receive the AM detector signal and to produce a control signal; a phase shifter in electrical communication with the control circuit to receive the primary oscillator signal and the control signal and to produce a secondary oscillator signal based on the primary oscillator signal and the control signal, the secondary oscillator signal comprising a second PM noise, wherein the second PM noise is less than the first PM noise.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: August 14, 2018
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Archita Hati, Craig Nelson, David Howe
  • Patent number: 10048567
    Abstract: An electronic light synthesizer electronically synthesizes supercontinuum light and includes: a microwave modulator that: receives a continuous wave light including an optical frequency; modulates the continuous wave light at a microwave repetition frequency; and produces a frequency comb modulated at the microwave repetition frequency; a self-phase modulator that: receives the frequency comb; spectrally broadens an optical wavelength range of the frequency comb; and produces broadened light modulated at the microwave repetition frequency; an optical filter that: receives the broadened light from the self-phase modulator; and optically filters electronic noise in the broadened light; and a supercontinuum generator that: receives the broadened light from the optical filter; spectrally broadens the optical wavelength range of the broadened light; and produces supercontinuum light modulated at the microwave repetition frequency.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: August 14, 2018
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Scott Papp, Scott Diddams, Katja Beha, Daniel Cole
  • Patent number: 10050722
    Abstract: A signal generator includes an optical pulse source to provide a plurality of optical pulses; a photosensitive element configured to receive optical pulses and to produce an electrical signal from optical pulses 6, electrical signal 10 including a spectrum that includes a plurality of discrete frequencies that occur at a repetition rate corresponding to that of the optical pulses or a harmonic thereof; a frequency selector to receive the electrical signal from the photosensitive element, to select dynamically the harmonic from the electrical signal and to communicate the dynamically selected harmonic; a direct digital synthesizer (DDS) to receive the harmonic of the electrical signal from the frequency selector and to produce a first output; and a frequency converter to receive the harmonic from the frequency selector and the first output from the DDS, wherein the frequency converter shifts a frequency of the harmonic by an amount substantially equal to a frequency of the first output from the DDS to produce
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: August 14, 2018
    Assignee: The United States of America, as Represented by the Secretary of Commerce
    Inventors: Franklyn J. Quinlan, Scott Diddams, Tara Fortier, Antoine Rolland
  • Patent number: 10049710
    Abstract: A nonvolatile memory cell includes: a first fixed magnetic layer; a first nonmagnetic electrode disposed on the first magnetic layer; a memory storage layer disposed on the first nonmagnetic electrode; a tunnel barrier layer disposed on the memory storage layer; a second fixed magnetic layer disposed on the tunnel barrier layer; and a second nonmagnetic electrode disposed on the second fixed magnetic layer.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: August 14, 2018
    Assignees: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE, UNIVERSITY OF DENVER
    Inventors: Thomas Silva, Justin Shaw, Eric Edwards, Xin Fan, Hans Nembach
  • Patent number: 10036683
    Abstract: An acousto-microwave system to determine a mass M of gas disposed in a vessel includes: a microwave transmitter disposed on the vessel to transmit microwave radiation inside the vessel, a portion of the microwave radiation occurring at a microwave resonance of the vessel; a microwave receiver disposed on the vessel to receive microwave radiation communicated through an interior of the vessel from the microwave transmitter; an acoustic transmitter disposed on the vessel to transmit acoustic radiation inside the vessel, a portion of the acoustic radiation occurring at an acoustic resonance of the gas in the vessel; and an acoustic receiver disposed on the vessel to receive acoustic radiation communicated through the gas from the acoustic transmitter. The mass M of the gas is determined by analyzing the microwave radiation received by the microwave receiver and the acoustic radiation received by the acoustic receiver.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: July 31, 2018
    Assignee: THE GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Michael R. Moldover, Keith A. Gillis, James B. Mehl
  • Patent number: 10009103
    Abstract: A microwave-frequency source at frequency fM comprises: a dual optical-frequency reference source, an electro-optic sideband generator, an optical bandpass filter, an optical detector, a reference oscillator, an electrical circuit, and a voltage-controlled oscillator (VCO). The sideband generator modulates dual optical reference signals at v2 and v1 to generate sideband signals at v1±n1fM and v2±n2fM. The bandpass filter transmits sideband signals at v1+N1fM and v2?N2fM. The optical detector generates a beat note at (v2?N2fM)?(v1+N1fM). The beat note and a reference oscillator signal are processed by the circuit to generate a loop-filtered error signal to input to the VCO. Output of the VCO at fM drives the sideband generator and forms the microwave-frequency output signal. The resultant frequency division results in reduced phase noise on the microwave-frequency signal.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: June 26, 2018
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Kerry Vahala, Scott Diddams, Jiang Li, Xu Yi, Hansuek Lee
  • Patent number: 9983183
    Abstract: A nanostructure sensing device comprises a semiconductor nanostructure having an outer surface, and at least one of metal or metal-oxide nanoparticle clusters functionalizing the outer surface of the nanostructure and forming a photoconductive nanostructure/nanocluster hybrid sensor enabling light-assisted sensing of a target analyte.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: May 29, 2018
    Assignees: University of Maryland, College Park, The United States of America, as represented by the Secretary of Commerce, George Mason University, The George Washington University
    Inventors: Abhishek Motayed, Geetha Aluri, Albert V. Davydov, Mulpuri V. Rao, Vladimir P. Oleshko, Ritu Bajpai, Mona E. Zaghloul, Brian Thomson, Baomei Wen, Ting Xie, Guannan Liu, Ratan Debnath
  • Patent number: 9970859
    Abstract: A detector mask transmits selectively a plurality of probe particles to a particle detector, the detector mask includes: a plate including a plate wall disposed in the plate and enclosing a transmission orifice arranged in a transmission profile to: transmit probe particles having a trajectory coincident with the transmission orifice, block probe particles having a trajectory external to the transmission orifice, and form a probe particle beam comprising the probe particles transmitted by the transmission orifice to the particle detector, wherein the transmission profile includes a sector, a semi-circle, an annular sector, or a combination including at least one of the foregoing first transmission profiles.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: May 15, 2018
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Jason D. Holm, Robert R. Keller, Katherine P. Rice
  • Patent number: 9958317
    Abstract: A differential goniophotometer includes: an integrating sphere including an interior bounded by an interior wall and that receives, in the interior, a primary light source that provides primary light; and a fisheye lens disposed in the interior of the integrating sphere in optical communication with the primary light source such that the fisheye lens: receives the primary light from the primary light source, and provides a curvilinear image of the interior of the integrating sphere and the primary light.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: May 1, 2018
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventor: Yuqin Zong
  • Patent number: 9951271
    Abstract: The present invention relates to a process for making an asymmetric fluorophore. The asymmetric fluorophore is useful as a stain for staining live cells or fixed cell and provides whole-cell staining of such cells.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: April 24, 2018
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Christopher Arnatt, John Elliott