Abstract: Disclosed is a polyamide film coated with a vinylidene chloride copolymer mixture, wherein: on at least one side of a biaxially stretched polyamide film, a vinylidene chloride copolymer mixture layer in which no thermal crosslinking agent is copolymerized is formed by coating without through an intermediary of a primer layer; the vinylidene chloride copolymer mixture is a mixture including two or more vinylidene chloride copolymers; and one of the vinylidene chloride copolymers has a crystal melting point of 170° C. or higher and 210° C. or lower and is contained in an amount of 25 to 45 parts by mass in relation to 100 parts by mass of the vinylidene chloride copolymer mixture.
Abstract: A biodegradable resin composition is provided, which is highly transparent with little agglomeration. The biodegradable resin composition comprises a biodegradable polyester resin, a phyllosilicate, and at least one of a polyether phosphate compound, a polar wax and jojoba oil.
Abstract: A composition which has high safety and is excellent in the effect of reducing body fat, such as visceral fat, subcutaneous fat and the like, and neutral fat, and a food, a pharmaceutical and a feed comprising the same, are provided. An oral administration composition having a body fat reducing action and/or a neutral fat reducing action, which is a composition comprising a carotenoid and a sphingolipid or a carotenoid and a flavonoid and/or a derivative thereof, preferably a composition comprising a cryptoxanthin and a sphingolipid or a cryptoxanthin and a flavonoid and/or a derivative thereof, wherein the cryptoxanthin and/or the sphingolipid and/or the flavonoid are derived from a citrus fruit and the citrus fruit is preferably Citrus unshiu.
Abstract: An object of the present invention, which was made to solve the problems above, is to provide a polyimide precursor resin composition superior in transparency allowing reduction of the residual volatile material rate during molding and giving a polyimide resin composition (e.g., polyimide film) superior in mechanical properties and transparency even when a cheaper polyamide-imide is used.
Abstract: Disclosed is a resin composition including a thermoplastic resin (A), a glass fiber (B) having a ratio of the major axis to the minor axis of the fiber cross section of 1.5 to 10 and a flame retardant (C), wherein the mass ratio (A/B) of the thermoplastic resin (A) to the glass fiber (B) is 30/70 to 95/5, and a part or the whole of the thermoplastic resin (A) is composed of a polyamide 11 resin (A1a) or/and a polyamide 1010 resin (A1b); and the resin composition includes 10 parts by mass or more of the polyamide 11 resin (A1a) or/and the polyamide 1010 resin (A1b) and 5 to 40 parts by mass of the flame retardant (C) in relation to 100 parts by mass of the total amount of the thermoplastic resin (A) and the glass fiber (B).
Abstract: A biodegradable polyester resin composition which comprises a thermoplastic polymer comprising 100 parts by mass of an aliphatic polyester (A) and 0.01 to 5 parts by mass of a (meth)acrylic ester (B1) and/or a glycidyl ether (B2, and has a gelation index (1) of not lower than 0.1% and a gelation index (2) of not higher than 0.5%.
Abstract: Disclosed is a process for producing a polyamide resin film, wherein in a simultaneous biaxial tenter stretching method for simultaneously biaxially, longitudinally and transversely, stretching an unstretched film by gripping the widthwise edges of the unstretched film with clips, from the start of the transverse stretching until the maximum stretching magnification factor of the transverse stretching is reached, the longitudinal stretching magnification factor represented by the linear distance between the adjacent clips is prevented from being decreased by 5% or more of the maximum stretching magnification factor of the longitudinal stretching.
Abstract: Disclosed is a resin composition excellent in mechanical strength, heat resistance, moist-heat durability and flame retardancy, and low in dependence on petroleum products. The resin composition includes a polylactic acid resin (A), a polycarbonate resin (B), a styrene thermoplastic elastomer (C), a monocarbodiimide compound (D) and a polyfunctional carbodiimide compound (E), wherein the mass ratio (A/B) between the polylactic acid resin (A) and the polycarbonate resin (B) is 25/75 to 90/10.
Abstract: A flame-retardant biodegradable polyester resin composition which comprises 100 parts by mass of a biodegradable polyester resin, 0.01 to 20 parts by mass of a (meth)acrylate compound, and 20 to 200 parts by mass of a metal oxide and/or a metal hydroxide.
Abstract: A gas barrier laminate comprising: a plastic substrate (I); a gas barrier layer (II) formed from a gas barrier layer-forming coating material (C) containing a polyalcohol-based polymer (A) and a polycarboxylic acid-based polymer (B); and a resin layer (III) formed from a resin coating material (F) containing either a monovalent metal compound (D), or a monovalent metal compound (D) and a bivalent or higher metal compound (E); wherein the gas barrier layer (II) is laminated to the plastic substrate (I), either directly or with an anchor coat layer disposed therebetween, and the resin layer (III) is laminated on top of the gas barrier layer (II).
Abstract: An aqueous polyolefin resin dispersion, a process for producing the same, and a water-based coating material comprising the same are provided. The aqueous polyolefin resin dispersion contains a polyolefin resin containing 50 to 98% by mass of an unsaturated hydrocarbon having 3 to 6 carbon atoms and 0.5 to 20% by mass of an unsaturated carboxylic acid unit, and a basic compound, and contains substantially no water-compatibilizing agent having a boiling point of 185° C. or higher at normal pressure. The polyolefin resin has a number average particle size of 1 ?m or smaller in the aqueous dispersion.
Abstract: A feed additive for laying hens comprising lactobionic acid or a lactobionic acid salt and a feed characterized by containing a feed additive for laying hens comprising lactobionic acid or a lactobionic acid salt and a feed. Namely, a feed additive for laying hens, which is excellent in effect of reinforcing eggshells, shows a particularly remarkable effect of improving eggshell qualities in the second half of the laying period, relieves stress caused by forced molting, cage transfer and so on and can inhibit lowering in the egg-laying rate.
Abstract: A gas barrier laminate comprising: a plastic substrate (I); a gas barrier layer (II) formed from a gas barrier layer-forming coating material (C) containing a polyalcohol-based polymer (A) and a polycarboxylic acid-based polymer (B); an overcoat layer (III) formed from an overcoat layer-forming coating material (F) containing at least one of a monovalent metal compound (D) and a bivalent or higher metal compound (E); and a top coat layer (IV) formed from a top coat layer-forming coating material (G); wherein the gas barrier layer (II) is laminated to the plastic substrate (I), either directly or with an anchor coat layer disposed therebetween, the overcoat layer (III) is laminated on top of the gas barrier layer (II), and the top coat layer (IV) is formed on top of the overcoat layer (III).
Abstract: A gas barrier laminate comprising: a plastic substrate (I); a gas barrier layer (II) formed from a gas barrier layer-forming coating material (C) containing a polyalcohol-based polymer (A) and a polycarboxylic acid-based polymer (B); and an overcoat layer (III) formed from an overcoat layer-forming coating material (F) containing at least one of a monovalent metal compound (D) and a bivalent or higher metal compound (E); wherein the gas barrier layer (II) is laminated to the plastic substrate (I), either directly or with an anchor coat layer disposed therebetween, the overcoat layer (III) is laminated on top of the gas barrier layer (II), and when a laminated product is prepared by laminating a laminate adhesive layer (IV) and a heat seal layer (V), in that order, to either the overcoat layer (III) or the plastic substrate (I) of the gas barrier laminate, either directly or with a printing ink layer disposed therebetween, the lamination strength (X) of the laminated product is not less than 1 N/cm, and the
Abstract: Provided are a resin composition in which a moldability is improved at a temperature at which a polylactic acid resin is crystallized by adding both a carboxylic acid amide or a carboxylic acid ester which has at least one polar group in a molecule and a layered silicate to the polylactic acid resin, and a molded article.
Type:
Application
Filed:
February 13, 2007
Publication date:
February 26, 2009
Applicants:
NEC CORPORATION, UNITIKA , LTD. OSAKA CENTER BLDG.
Abstract: A polylactic acid-containing resin composition is provided which comprises 100 parts by mass of a resin containing 20 to 98 mass % of polymethyl methacrylate and 80 to 2 mass % of polylactic acid, and 1 to 100 parts by mass of an impact resistance improving material. The impact resistance improving material is a polymeric material comprising an acrylic monomer unit. The impact resistance improving material has a refractive index of 1.402 to 1.542. The resin composition is excellent in heat resistance, moldability, durability, transparency and impact resistance.
Abstract: It is intended to provide a biodegradable polyester resin composition which is excellent in gas barrier properties, mechanical strength and heat resistance and has Theological characteristics advantageously usable in molding a foamed article, etc., a process for producing the same, and a foamed article and a molded article using the same. The biodegradable polyester resin composition contains 100 parts by mass of a biodegradable polyester resin containing 59% mole or more of a hydroxycarboxylic acid unit, 0.01 to 10 parts by mass of a (meth)acrylic acid ester compound and 0.05 to 20 parts by mass of a layered silicate.
Abstract: [Problems to be solved] To provide a shoes sole possessing improved resistance to bending fatigue without increasing weight and shoes containing such shoe sole. [Means to solve the problem] Shoes, in particular canvas shoes made of polyamide resin composition, characterized in that layered silicate is dispersed uniformly in a polyamide resin, the inorganic ash content in said polyamide resin composition being 0.1 to 30% by weight.
Abstract: The present invention provides a substrate for a flexible printed wiring board including an adhesive layer containing an epoxy resin composition, insulating layers respectively stacked on both sides of the adhesive layer and formed with a pair of films containing a nonthermoplastic polyimide resin, and conductor layers respectively disposed on the outer surfaces of the films. The total thickness of the insulating layers respectively stacked on both sides of the adhesive layer is 10 to 100 ?m and 2 to 10 times the thickness of the adhesive layer. The mutual adhesion strength between the insulating layers through the intermediary of the adhesive layer is 7.0 N/cm or more.
Abstract: An aliphatic polyester resin composition is provided which is excellent in heat resistance, moldability and hydrolysis resistance. The aliphatic polyester resin composition comprises a biodegradable polyester resin (A) essentially including an ?- and/or ?-hydroxycarboxylic acid unit and crosslinked by at least one crosslinking agent (B) selected from the group consisting of (meth)acrylate compounds and polyvalent isocyanate compounds, wherein some or all of carboxyl groups of the resin (A) are blocked by 0.01 to 20 parts by mass of a terminal blocking agent (C) based on 100 parts by mass of the resin (A).