Patents Assigned to Univation Technologies, LLC
  • Patent number: 12240927
    Abstract: A unimodal ethylene-co-1-hexene copolymer that, when in melted form at 190 degrees Celsius, is characterized by a unique melt property space defined by combination of melt elasticity and complex viscosity ratio (shear thinning) properties. A blown film consisting essentially of the unimodal ethylene-co-1-hexene copolymer. A method of synthesizing the unimodal ethylene-co-1-hexene copolymer. A method of making the blown film. A manufactured article comprising the unimodal ethylene-co-1-hexene copolymer.
    Type: Grant
    Filed: March 22, 2024
    Date of Patent: March 4, 2025
    Assignee: UNIVATION TECHNOLOGIES, LLC
    Inventors: Bo Liu, Yi Zhang, Ayush A. Bafna, François Alexandre, Robert N. Reib
  • Patent number: 12234347
    Abstract: A nucleating agent-free and LLDPE-free polyolefin composition for making films with enhanced barrier properties against water vapor and oxygen gas. Related aspects include formulations, manufactured articles, films, and methods.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: February 25, 2025
    Assignee: UNIVATION TECHNOLOGIES, LLC
    Inventors: Nitin Borse, Swapnil B. Chandak, Ayush A. Bafna, Roger L. Kuhlman, Joel D. Wieliczko, John F. Szul, Chuan C. He, Charles D. Lester
  • Publication number: 20240425627
    Abstract: According to one embodiment, a process for producing unimodal ethylene/?-olefin copolymer, the process comprising contacting ethylene and, optionally, one or more (C3-C12)?-olefin comonomers with a catalyst system in a gas-phase polymerization reactor, wherein the catalyst system comprises a chromium-based catalyst; wherein the unimodal ethylene copolymer comprises: a density from 0.942 g/cm3 to 0.950 g/cm3 according to ASTM D792-13; a flow index (I21) from 5.5 to 7.5 dg/min, when measured according to ASTM D1238 at 190° C. and a 21.6 kg load; a strain hardening modulus of 40 to 50 MPa; and a molecular weight distribution (MWD) as determined by a conventional gel permeation chromatography method or absolute gel permeation chromatography.
    Type: Application
    Filed: October 14, 2022
    Publication date: December 26, 2024
    Applicant: Univation Technologies, LLC
    Inventors: Elva L. Lugo, Mengmeng Li, Cliff R. Mure, Taylor L. Crammer, Francois Alexandre
  • Patent number: 12173096
    Abstract: A unimodal ethylene-co-1-butene copolymer that, when in melted form at 190 degrees Celsius, is characterized by a unique melt property space defined by combination of shear thinning and melt elasticity properties. A blown film consisting essentially of the unimodal ethylene-co-1-butene copolymer. A method of synthesizing the unimodal ethylene-co-1-butene copolymer. A method of making the blown film. A manufactured article comprising the unimodal ethylene-co-1-butene copolymer.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: December 24, 2024
    Assignee: UNIVATION TECHNOLOGIES, LLC
    Inventors: Bo Liu, Yi Zhang, Ayush A. Bafna, François Alexandre, Kevin R. Gross
  • Patent number: 12173108
    Abstract: A method of independently changing a melt rheology property value of a bimodal polyethylene polymer being made using a bimodal catalyst system in a single gas phase polymerization reactor. The method comprises process conditions comprising alkane(s) in the reactor. The method comprises a bimodal catalyst system that is characterized by an inverse response to alkane(s) concentration. The method comprises changing concentration of the alkane(s) in the reactor by an amount sufficient to effect a measurable change in the melt rheology property value; wherein the bimodal catalyst system is characterized by an inverse response to alkane(s) concentration such that when the alkane(s) concentration is increased, the melt rheology property value of the resulting bimodal polyethylene polymer is decreased, and when the alkane(s) concentration is decreased, the melt rheology property value of the resulting bimodal polyethylene polymer is increased.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: December 24, 2024
    Assignee: UNIVATION TECHNOLOGIES, LLC
    Inventors: Chuan He, Timothy R. Lynn, Robert N. Reib, Bo Liu
  • Publication number: 20240417492
    Abstract: Embodiments are directed towards methods of making binodal polyethylenes, wherein the methods include a plurality of cycles of ratio adjustments.
    Type: Application
    Filed: October 25, 2022
    Publication date: December 19, 2024
    Applicant: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, Timothy R. Lynn
  • Publication number: 20240400731
    Abstract: According to one embodiment, a process for producing a unimodal ethylene/?-olefin copolymer, the process comprising contacting ethylene and one or more (C3-C12) ?-olefin comonomers with a chromium-based catalyst system in a gas-phase polymerization reactor to produce the unimodal ethylene/?-olefin copolymer; wherein the unimodal ethylene/?-olefin copolymer comprises: a density from 0.952 g/cm3 to 0.957 g/cm3; a flow index (I21) from 4.0 to 6.2 dg/min; a melt viscosity ratio (V0.1/V100) at 190° C. of 55 to 75; a molecular weight distribution (MWD) as calculated by the weight average molecular weight (Mw) divided by the number-average molecular weight (Mn) (Mw/Mn); and a peak molecular weight (Mp), all as measured by gel permeation chromatography.
    Type: Application
    Filed: October 14, 2022
    Publication date: December 5, 2024
    Applicant: Univation Technologies, LLC
    Inventors: Elva L. Lugo, Bo Liu, Mengmeng Li, Cliff R. Mure, Taylor L. Crammer, Francois Alexandre
  • Publication number: 20240367120
    Abstract: Disclosed herein is a method for polymerizing a compound in a gas phase reactor. The method includes at least passing a liquid catalyst to a catalyst inlet of a manifold assembly, passing a carrier gas to a carrier gas inlet of the manifold assembly, combining the liquid catalyst and the carrier gas in the main channel of the manifold assembly, and passing the combination of the liquid catalyst and the carrier gas to the reaction chamber. The present disclosure is also directed to manifold assemblies for communication with reaction chambers.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 7, 2024
    Applicant: Univation Technologies, LLC
    Inventors: Samuel M. Bernal, Simon J. White, Dung P. Le, Michael I. Hurdle, David B. Dentler
  • Patent number: 12049527
    Abstract: A bimodal ethylene-co-1-hexene copolymer composition consisting of a higher molecular weight component and a lower molecular weight component and, when in melted form at 190 degrees Celsius, is characterized by a melt property performance defined by a combination of melt index (5 kg), melt strength, and, optionally, shear thinning properties, and, when in solid form, is characterized by a slow crack growth property performance defined by a combination of strain hardening modulus and accelerated full-notch creep test performance. A pipe consisting of the bimodal ethylene-co-1-hexene copolymer composition. A method of synthesizing the bimodal ethylene-co-1-hexene copolymer composition. A method of making the pipe. A manufactured article, which is not a pipe, comprising the bimodal ethylene-co-1-hexene copolymer composition.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: July 30, 2024
    Assignee: UNIVATION TECHNOLOGIES, LLC
    Inventors: Cliff R. Mure, Timothy R. Lynn, Roger L Kuhlman, John F. Szul, Angela I. Padilla-Acevedo
  • Patent number: 12012472
    Abstract: A unimodal ethylene-co-1-hexene copolymer that, when in melted form at 190 degrees Celsius, is characterized by a unique melt property space defined by combination of melt elasticity and complex viscosity ratio (shear thinning) properties. A blown film consisting essentially of the unimodal ethylene-co-1-hexene copolymer. A method of synthesizing the unimodal ethylene-co-hexene copolymer. A method of making the blown film. A manufactured article comprising the unimodal ethylene-co-1-hexene copolymer.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: June 18, 2024
    Assignee: UNIVATION TECHNOLOGIES, LLC
    Inventors: Bo Liu, Yi Zhang, Ayush A. Bafna, François Alexandre, Robert N. Reib
  • Patent number: 11945889
    Abstract: A bimodal ethylene-co-1-hexene copolymer consisting essentially of a higher molecular weight component and a lower molecular weight component and, when in melted form at 190 degrees Celsius, is characterized by a unique melt property space defined by a combination of high-load melt index, melt flow ratio, and melt elasticity properties. A blown film consisting essentially of the bimodal ethylene-co-1-hexene copolymer. A method of synthesizing the bimodal ethylene-co-1-hexene copolymer. A method of making the blown film. A manufactured article comprising the bimodal ethylene-co-1-hexene copolymer.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: April 2, 2024
    Assignee: Univation Technologies LLC
    Inventors: Bo Liu, Joel D. Wieliczko, John F. Szul, Daudi A. Abe, Roger L. Kuhlman, Ayush A. Bafna, Timothy R. Lynn
  • Publication number: 20240076427
    Abstract: Catalyst systems and methods for making and using the same. A method of methylating a catalyst composition while substantially normalizing the entiomeric distribution is provided. The method includes slurrying the organometallic compound in dimethoxyethane (DME), and adding a solution of RMgBr in DME, wherein R is a methyl group or a benzyl group, and wherein the RMgBr is greater than about 2.3 equivalents relative to the organometallic compound. After the addition of the RMgBr, the slurry is mixed for at least about four hours. An alkylated organometallic is isolated, wherein the methylated species has a meso/rac ratio that is between about 0.9 and about 1.2.
    Type: Application
    Filed: April 27, 2023
    Publication date: March 7, 2024
    Applicant: Univation Technologies, LLC
    Inventors: Francis C. Rix, Alexander D. Todd, C. Jeff Harlan
  • Patent number: 11845855
    Abstract: A bimodal linear polyethylene composition, products made therefrom, methods of making and using same, and articles containing same.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: December 19, 2023
    Assignee: UNIVATION TECHNOLOGIES LLC
    Inventors: Swapnil Chandak, Nitin Borse, Ayush A. Bafna, Yi Zhang, Timothy R. Lynn, Roger L. Kuhlman, John F. Szul
  • Patent number: 11827725
    Abstract: A bimodal polyethylene composition, products made therefrom, methods of making and using same, and articles, including bottle caps and closures, containing same.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: November 28, 2023
    Assignee: Univation Technologies LLC
    Inventors: Nitin Borse, Swapnil B. Chandak, Yi Zhang, Timothy R. Lynn, Roger L Kuhlman, John F. Szul
  • Patent number: 11767385
    Abstract: A bimodal ethylene-co-1-butene copolymer consisting essentially of a higher molecular weight component and a lower molecular weight component and, when in melted form at 190 degrees Celsius, is characterized by a unique melt property space defined by a combination of high-load melt index, melt flow ratio, and melt elasticity properties. A (blown) film consisting essentially of the bimodal ethylene-co-1-butene copolymer and having improved properties. Methods of synthesizing the bimodal ethylene-co-1-butene copolymer and making the blown film. A manufactured article comprising the bimodal ethylene-co-1-butene copolymer.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: September 26, 2023
    Assignee: UNIVATION TECHNOLOGIES LLC
    Inventors: Bo Liu, Chuan He, Daudi A. Abe, Roger L. Kuhlman, Ayush A. Bafna, Timothy R. Lynn
  • Publication number: 20230250204
    Abstract: Catalyst systems and methods for making and using the same. A method of polymerizing olefins to produce a polyolefin polymer with a multimodal composition distribution, includes contacting ethylene and a comonomer with a catalyst system. The catalyst system includes a first catalyst compound and a second catalyst compound that are co-supported to form a commonly supported catalyst system. The first catalyst compound includes a compound with the general formula (C5HaR1b)(C5HcR2d)HfX2. The second catalyst compound comprises the following formula: wherein each R3 or R4 is independently H, a hydrocarbyl group, a substituted hydrocarbyl group, or a heteroatom group, wherein each R3 or R4 may be the same or different, and each X is independently a leaving group selected from a labile hydrocarbyl, a substituted hydrocarbyl, a heteroatom group, or a divalent radical that links to an R3 group.
    Type: Application
    Filed: April 14, 2023
    Publication date: August 10, 2023
    Applicant: Univation Technologies, LLC
    Inventors: Sun-Chueh Kao, Francis C. Rix, Ching-Tai Lue, Mark G. Goode, Dongming Li
  • Patent number: 11708438
    Abstract: A system and method of producing polyethylene, including: polymerizing ethylene in presence of a catalyst system in a reactor to form polyethylene, wherein the catalyst system includes a first catalyst and a second catalyst; and adjusting reactor conditions and an amount of the second catalyst fed to the reactor to control melt index (MI), density, and melt flow ratio (MFR) of the polyethylene.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: July 25, 2023
    Assignee: Univation Technologies, LLC
    Inventors: Timothy M. Boller, Ching-Tai Lue, Francis C. Rix, Daniel P. Zilker, Jr., C. Jeff Harlan, James M. Farley, Fathi David Hussein, Dongming Li, Steven A. Best
  • Publication number: 20230192920
    Abstract: In various embodiments, a bimodal polyethylene composition may have a density (?) from 0.952 g/cm3 to 0.957 g/cm3, a high load melt index (I21) from 1 to 10 dg/min, and a z-average molecular weight (Mz(GPC)) from 3,200,000 to 5,000,000 g/mol. The bimodal polyethylene composition may also have a peak molecular weight (Mp(GPC)) defined by the equation: Mp(GPC)<?2,805.3 MWD+102,688, wherein MWD is a molecular weight distribution defined by the equation: MWD=Mw(GPC)/Mn(GPC), Mw(GPC) is a weight average molecular weight of the bimodal polyethylene composition, Mn(GPC) is a number average molecular weight of the bimodal polyethylene composition. Additionally, the bimodal polyethylene composition has a ratio of the (Mz(GPC)) to the Mw(GPC) from 8.5 to 10.5. Articles made from the bimodal polyethylene composition, such as articles made by blow molding processes, are also provided.
    Type: Application
    Filed: May 24, 2021
    Publication date: June 22, 2023
    Applicant: Univation Technologies, LLC
    Inventors: Bo Liu, Shadid Askar, Joel D. Wieliczko, Mridula Kapur
  • Publication number: 20230174694
    Abstract: Catalyst systems and methods for making and using the same. A method of polymerizing olefins to produce a polyolefin polymer with a multimodal composition distribution, includes contacting ethylene and a comonomer with a catalyst system. The catalyst system includes a first catalyst compound and a second catalyst compound that are co-supported to form a commonly supported catalyst system. The first catalyst compound includes a compound with the general formula (C5HaR1b)(C5HcR2d)HfX2. The second catalyst compound includes at least one of the following general formulas: In both catalyst systems, the R groups can be independently selected from any number of substituents, including, for example, H, a hydrocarbyl group, a substituted hydrocarbyl group, or a heteroatom group, among others.
    Type: Application
    Filed: January 30, 2023
    Publication date: June 8, 2023
    Applicant: Univation Technologies, LLC
    Inventors: Francis C. Rix, Ching-Tai Lue, C. Jeff Harlan, Laughlin G. McCullough
  • Patent number: 11661466
    Abstract: Catalyst systems and methods for making and using the same. A method of methylating a catalyst composition while substantially normalizing the entiomeric distribution is provided. The method includes slurrying the organometallic compound in dimethoxyethane (DME), and adding a solution of RMgBr in DME, wherein R is a methyl group or a benzyl group, and wherein the RMgBr is greater than about 2.3 equivalents relative to the organometallic compound. After the addition of the RMgBr, the slurry is mixed for at least about four hours. An alkylated organometallic is isolated, wherein the methylated species has a meso/rac ratio that is between about 0.9 and about 1.2.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: May 30, 2023
    Assignee: Univation Technologies, LLC
    Inventors: Francis C. Rix, Alexander D. Todd, C. Jeff Harlan