Patents Assigned to Univation Technologies, LLC
  • Publication number: 20170015768
    Abstract: Polymerization process control methods for making polyethylene are provided. The process control methods include performing a polymerization reaction in a polymerization reactor to produce the polyethylene, where ethylene, and optionally one or more comonomers, in the polymerization reaction is catalyzed by an electron donor-free Ziegler-Natta catalyst and an alkyl aluminum co-catalyst. A melt flow ratio (I21/I2) of the polyethylene removed from the polymerization reactor is measured and an amount of long chain branching (LCB) of the polyethylene from the polymerization reactor is controlled by adjusting a weight concentration of the alkyl aluminum co-catalyst present in the polymerization reactor.
    Type: Application
    Filed: September 27, 2016
    Publication date: January 19, 2017
    Applicant: Univation Technologies, LLC
    Inventors: Wesley R. Mariott, Kevin J. Cann, John H. Moorhouse, Mark G. Goode, Thomas Oswald
  • Publication number: 20170008983
    Abstract: Catalyst systems and methods for making and using the same are described. A method includes selecting a catalyst blend using a blend polydispersity index (bPDI) map. The polydispersity map is generated by generating a number of polymers for at least two catalysts. Each polymer is generated at a different hydrogen to ethylene ratio. At least one catalyst generates a higher molecular weight polymer and another catalyst generates a lower molecular weight polymer. A molecular weight for each polymer is measured. The relationship between the molecular weight of the polymers generated by each of the catalysts and the ratio of hydrogen to ethylene is determined. A family of bPDI curves for polymers that would be made using a number of ratios of a blend of the at least two catalysts for each of a number of ratios of hydrogen to ethylene.
    Type: Application
    Filed: February 10, 2015
    Publication date: January 12, 2017
    Applicant: Univation Technologies, LLC
    Inventors: Francis C. Rix, Ching-Tai Lue, Timothy M. Boller, Garth R. Giesbrecht, C. Jeff Harlan
  • Patent number: 9540460
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst systems can include a plurality of silica particles and a metallocene catalyst and an activator supported on the plurality of silica particles. The polymerization catalysts have a particle size distribution in which about 10% of the particles have a size less than about 17 to about 23 micrometers, about 50% of the particles have a size less than about 40 to about 45 micrometers, and about 90% of the particles have a size less than about 72 to about 77 micrometers.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: January 10, 2017
    Assignee: Univation Technologies, LLC
    Inventors: C. Dale Lester, Kevin J. Cann, Phuong A. Cao, Abarajith S. Hari, F. David Hussein, Wesley R. Mariott, John H. Moorhouse, Richard B. Pannell, Bruce J. Savatsky, Daniel P. Zilker, Jr., Mark G. Goode
  • Publication number: 20160362510
    Abstract: Catalyst systems and methods for making and using the same. A method of polymerizing olefins to produce a polyolefin polymer with a multimodal composition distribution, includes contacting ethylene and a comonomer with a catalyst system. The catalyst system includes a first catalyst compound and a second catalyst compound that are co-supported to form a commonly supported catalyst system. The first catalyst compound includes a compound with the general formula (C5HaR1b)C5HcR2d)HfX2. The second catalyst compound includes at least one of general formulas (A) or (B). In both catalyst systems, the R groups can be independently selected from any number of substituents, including, for example, H, a hydrocarbyl group, a substituted hydrocarbyl group, or a heteroatom group, among others.
    Type: Application
    Filed: February 10, 2015
    Publication date: December 15, 2016
    Applicant: Univation Technologies, LLC
    Inventors: Francis C. Rix, Ching-Tai Lue, C. Jeff Harlan, Laughlin G. McCullough
  • Patent number: 9512254
    Abstract: A process for the production of ethylene alpha-olefin copolymers is disclosed. The process may include feeding a catalyst system comprising a supported metallocene, such as a hafnocene, having pores saturated with a selected liquid agent, to a gas phase polymerization reactor. Ethylene and an alpha-olefin may then be contacted with the supported metallocene in the gas phase polymerization reactor to produce an ethylene alpha-olefin copolymer. The copolymer may have a density of less than 0.93 g/cm3, a melt index (I2) of less than 2 dg/min, and a melt flow ratio (I21/I2) of at least 28. To advantageously result in desired effects on catalyst properties and/or polymer properties, the liquid agent may be selected to advantageously manipulate catalyst temperature profiles and/or catalyst-monomer interaction during an initial heating period when the catalyst is first introduced to the reactor.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: December 6, 2016
    Assignee: Univation Technologies, LLC
    Inventors: F. David Hussein, Daniel P. Zilker, Jr., Kevin J. Cann
  • Publication number: 20160347888
    Abstract: Polymers, and systems and methods for making and using the same are described herein. A polymer includes ethylene and at least one alpha olefin having from 4 to 20 carbon atoms. The polymer has a melt index ratio (MIR) greater than about 40. The polymer also has a value for Mw1/Mw2 of at least about 2.0, wherein Mw1/Mw2 is a ratio of a weight average molecular weight (Mw) for a first half of a temperature rising elution (TREF) curve from a cross-fractionation (CFC) analysis to an Mw for a second half of the TREF curve. The polymer also has a value for Tw1?Tw2 of less than about ?15° C., wherein Tw1?Tw2 is a difference of a weight average elution temperature (Tw) for the first half of the TREF curve to a Tw for the second half of the TREF curve.
    Type: Application
    Filed: February 10, 2015
    Publication date: December 1, 2016
    Applicant: Univation Technologies, LLC
    Inventors: Ching-Tai Lue, Francis C. Rix, Timothy M. Boller, Garth R. Giesbrecht, Mark G. Goode, Sun-Chueh Kao, Dongming Li, R. Eric Pequeno, James M. Farley, Daniel P. Zilker, Jr.
  • Publication number: 20160347886
    Abstract: Polymers, and systems and methods for making and using the same are described herein. A polymer includes ethylene and at least one alpha olefin having from 4 to 20 carbon atoms. The polymer is formed by a trimmed catalyst system including a supported catalyst including bis(n-propylcyclopentadienyl) hafnium (R1)(R2) and a trim catalyst comprising meso-O(SiMe2Ind)2Zr(R1)(R2), wherein R1 and R2 are each, independently, methyl, chloro, fluoro, or a hydrocarbyl group.
    Type: Application
    Filed: February 10, 2015
    Publication date: December 1, 2016
    Applicant: Univation Technologies, LLC
    Inventors: Ching-Tai Lue, Francis C. Rix, Timothy M. Boller, Garth R. Giesbrecht, Mark G. Goode, Sun-Chueh Kao, Dongming Li, R. Eric Pequeno, Daniel P. Zilker, Jr.
  • Publication number: 20160347890
    Abstract: Catalyst systems and methods for making and using the same. A method of polymerizing olefins to produce a polyolefm polymer with a multimodal composition distribution, includes contacting ethylene and a comonomer with a catalyst system. The catalyst system includes a first catalyst compound and a second catalyst compound that are co-supported to form a commonly supported catalyst system. The first catalyst compound includes a compound with the general formula (C5HaR1b) (C5HcR24)HfX2. The second catalyst compound comprises the following formula: (A), wherein each R3 or R4 is independently H, a hydrocarbyl group, a substituted hydrocarbyl group, or a heteroatom group, wherein each R3 or R4 may be the same or different, and each X is independently a leaving group selected from a labile hydrocarbyl, a substituted hydrocarbyl, a heteroatom group, or a divalent radical that links to an R3 group.
    Type: Application
    Filed: February 10, 2015
    Publication date: December 1, 2016
    Applicant: Univation Technologies, LLC
    Inventors: Sun-Chueh Kao, Francis C. Rix, Ching-Tai Lue, Mark G. Goode, Dongming Li
  • Publication number: 20160347889
    Abstract: Catalyst systems and methods for making and using the same. A method of polymerizing olefins to produce a polyolefin polymer with a multimodal composition distribution, includes contacting ethylene and a comonomer with a catalyst system. The catalyst system includes a first catalyst compound and a second catalyst compound that are co-supported to form a commonly supported catalyst system. The first catalyst compound includes a compound with the general formula (C5HaR1b)(C5HcR2d)HfX2. The second catalyst compound includes at least one of the following general formulas: In both catalyst systems, the R groups can be independently selected from any number of substituents, including, for example, H, a hydrocarbyl group, a substituted hydrocarbyl group, or a heteroatom group, among others.
    Type: Application
    Filed: February 10, 2015
    Publication date: December 1, 2016
    Applicant: Univation Technologies, LLC
    Inventors: Ching-Tai Lue, Francis C. Rix, C. Jeff Harlan, Laughlin G. McCullough
  • Publication number: 20160347874
    Abstract: A system and method of producing polyethylene, including: polymerizing ethylene in presence of a catalyst system in a reactor to form polyethylene, wherein the catalyst system includes a first catalyst and a second catalyst; and adjusting reactor conditions and an amount of the second catalyst fed to the reactor to control melt index (MI), density, and melt flow ratio (MFR) of the polyethylene.
    Type: Application
    Filed: February 10, 2015
    Publication date: December 1, 2016
    Applicant: Univation Technologies, LLC
    Inventors: Timothy M. Boller, Ching-Tai Lue, Francis C. Rix, Daniel P. Zilker, Jr., C. Jeff Harlan, James M. Farley, Fathi D. Hussein, Dongming Li, Steven A. Best
  • Patent number: 9487601
    Abstract: Methods for making olefin polymerization catalysts and methods for making polymers using the catalysts are provided. The method for making the catalyst can include combining one or more supports with one or more magnesium-containing compounds under reaction conditions to form a first reacted product. One or more chlorinating compounds selected from the group consisting of aluminum alkyl chlorides and chloro substituted silanes can be combined with the first reacted product under reaction conditions to form a second reacted product. One or more titanium-containing compounds selected from the group consisting of titanium alkoxides and titanium halides can be combined with the second reacted product under reaction conditions to form a catalyst.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: November 8, 2016
    Assignee: Univation Technologies, LLC
    Inventors: Wesley R. Mariott, Kevin J. Cann, John H. Moorhouse, Mark G. Goode, Thomas Oswald
  • Publication number: 20160311937
    Abstract: Processes for making and using a viscosified liquid slurry polymerization additive are disclosed herein. The process for making a viscosified liquid slurry polymerization additive comprises contacting a polymerization additive with a liquid to form a liquid slurry polymerization additive, and shearing the liquid slurry polymerization additive to increase its viscosity and thus form the viscosified liquid slurry polymerization additive. The process for using a viscosified liquid slurry polymerization additive comprises contacting, under polymerization conditions, in a reactor system: a catalyst system, one or more monomers, and at least one viscosified liquid slurry polymerization additive.
    Type: Application
    Filed: September 25, 2014
    Publication date: October 27, 2016
    Applicant: Univation Technologies, LLC
    Inventors: Richard B. Pannell, David M. Glowczwski, Chi-I Kuo
  • Publication number: 20160297907
    Abstract: Disclosed herein are methods of controlling polymer properties in polymerization processes that use a chromium-based catalyst. An embodiment discloses a method of producing a polyolefin comprising: contacting a reaction mixture and a reduced chromium oxide catalyst in a gas-phase reactor to produce the polyolefin, wherein the reaction mixture comprises a monomer and a co-monomer; and changing a reaction temperature in the gas-phase reactor by about 1° C. or more whereby a gas molar ratio of the co-monomer to the monomer is changed by about 2% or more and a co-monomer content of the polyolefin at substantially constant density is changed by about 2% or more. Additional methods and compositions are also provided.
    Type: Application
    Filed: September 25, 2014
    Publication date: October 13, 2016
    Applicant: Univation Technologies, LLC
    Inventors: Mark G. Goode, Francois Alexandre, Kevin J. Cann, Barbara J. Kopp, William A. Matthews, John H. Moorehouse, Cliff R. Mure
  • Patent number: 9410001
    Abstract: Disclosed herein are improvements in recycle gas cooler systems in gas-phase polymerization processes that reduce the tendency for cooler fouling, including a recycle gas cooler system comprising a shell-and-tube heat exchanger. One or more of the tubes of the shell-and-tube heat exchanger may have a flared tube inlet at the tube sheet. The shell-and-tube heat exchanger may also be coupled to a straight inlet pipe having a length that is either at least about 5 times the inner diameter of the straight inlet pipe or at least about 15 feet, whichever is greater.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: August 9, 2016
    Assignee: Univation Technologies, LLC
    Inventors: Ping Cai, James L. Swecker, II, Mark W. Blood, Laura J. Dietsche, II, F. David Hussein
  • Publication number: 20160194421
    Abstract: Methods for making olefin polymerization catalysts and methods for making polyethylene polymers using the catalysts are provided. The polyethylenes can have a molecular weight distribution (MWD) of about 4.5 to about 14, a slope of strain hardening greater than about 0.75, and a melt flow ratio (MFR) greater than or equal to 8.33+(4.17×MWD).
    Type: Application
    Filed: September 2, 2014
    Publication date: July 7, 2016
    Applicant: Univation Technologies, LLC
    Inventors: Wesley R. Mariott, Kevin J. Cann, John H. Moorhouse, Mark G. Goode, Thomas Oswald
  • Patent number: 9371197
    Abstract: Improved systems and processes for storing resins are disclosed herein. These systems and processes are especially useful for reducing the tendency of resins to sinter. In polymerization processes, the improvements disclosed herein can reduce the tendency of resins to sinter while also allowing downstream operations to continue.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: June 21, 2016
    Assignee: Univation Technologies, LLC
    Inventors: Simon J. White, Alison H. Hasbargen
  • Publication number: 20160122270
    Abstract: A method for protecting a phenol group on a precursor compound is provided. The method includes reacting the phenol group with dihydropyran in an acid catalyzed protection reaction and quenching the protection reaction with a strong base within less than about 60 seconds to form a protected precursor compound.
    Type: Application
    Filed: May 12, 2014
    Publication date: May 5, 2016
    Applicant: Univation Technologies, LLC
    Inventors: C. Jeff Harlan, Steven D. Brown
  • Patent number: 9303103
    Abstract: Embodiments disclosed herein generally relate to olefin polymerization catalysts, and more specifically to chromium-based catalysts and methods of use of chromium-based catalysts for the production of polyolefins, and even more specifically to methods for controlling or tailoring the flow index response of chromium-based catalysts through the controlled addition of a reducing agent to the catalysts under controlled mixing conditions.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: April 5, 2016
    Assignee: Univation Technologies, LLC
    Inventors: John H. Moorhouse, Kevin J. Cann, Mark G. Goode, Ronald S. Eisinger
  • Publication number: 20160032025
    Abstract: Catalyst systems and methods for making and using the same. A catalyst system can include a non-metallocene catalyst having the structure: wherein M is a group 4 element, each of R13-R20 are independently a hydrogen or a methyl group, wherein at least one of R13-R20 is a methyl group, Ar is an aryl group or a substituted aryl group, Ar? is an aryl group or a substituted aryl group, and each X is, independently, a hydride group, an amide, a benzyl group, a methyl group, a chloro group, a fluoro group, or a hydrocarbyl group.
    Type: Application
    Filed: February 21, 2014
    Publication date: February 4, 2016
    Applicant: Univation Technologies LLC
    Inventor: Garth R. Giesbrecht
  • Publication number: 20160032034
    Abstract: Polyethylene films may include a polyethylene copolymer polymerized in the presence of a hafnium-based metallocene catalyst, wherein the polyethylene comprises a solubility distribution breadth index (SDBI) less than or equal to 23° C.; a melt index (12) less than 1.5; a flow index (121) of from about 16 to about 28; and a melt flow ratio (121/12) of from about 18 to about 23. The film has a cling value that is at least 60% of a cling value the film has at 48 hours after time zero, and wherein time zero is equal to less than 24 hours.
    Type: Application
    Filed: March 14, 2014
    Publication date: February 4, 2016
    Applicant: Univation Technologies, LLC
    Inventors: James M. Farley, Phillip A. Adetunji, Stephen J. Mirams, Gerald L. Beckton