Patents Assigned to Universitatsmedizin der Johannes Gutenberg-Universitat Mainz
  • Publication number: 20240148825
    Abstract: The current disclosure provides methods and composition for treatment of autoimmune and inflammatory conditions, including systemic lupus erythematosus and antiphospholipid syndrome. Certain aspects of the disclosure are directed to methods for treatment of an autoimmune or inflammatory condition comprising administering a composition comprising a therapeutically effective amount of NAPc2 or NAPc2/proline. Further aspects include pharmaceutical compositions comprising NAPc2 or NAPc2/proline and, in some cases, one or more additional anti-inflammatory agents.
    Type: Application
    Filed: June 9, 2022
    Publication date: May 9, 2024
    Applicant: UNIVERSITÄTSMEDIZIN DER JOHANNES GUTENBERG-UNIVERSITÄT MAINZ
    Inventors: Wolfram RUF, Nadine MÜLLER-CALLEJA, Karl LACKNER, Julia WEINMANN-MENKE
  • Patent number: 11920194
    Abstract: This invention relates to methods for screening for a genotype for loss of antigen presentation via MHC class I in a subject and/or respectively detecting a subject's increased risk of resistance against immunotherapy such as against vaccination.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: March 5, 2024
    Assignees: BioNTech SE, TRON—Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz
    Inventors: Ugur Sahin, Martin Suchan, Barbara Schrörs, Martin Löwer, Petra Oehm
  • Patent number: 11919951
    Abstract: The invention relates to antibodies directed against an epitope located within the C-terminal portion of CLDN6 which are useful, for example, in diagnosing cancer and/or in determining whether cancer cells express CLDN6.
    Type: Grant
    Filed: February 7, 2022
    Date of Patent: March 5, 2024
    Assignees: Astellas Pharma Inc., TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz
    Inventors: Rita Mitnacht-Kraus, Stefan Wöll, Korden Walter, Özlem Türeci, Ugur Sahin
  • Patent number: 11732308
    Abstract: The invention generally relates to methods and compositions for the prediction of therapeutic efficacy of cancer treatments and the prognosis of cancer. The invention discloses markers that are associated with favorable and unfavorable outcomes, respectively, in certain cancer treatments and are useful as prognostic markers for cancer. Methods involving these markers are disclosed for predicting cancer therapy benefit and prognosing clinical outcome for cancer patients.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: August 22, 2023
    Assignees: Astellas Pharma Inc., TRON—TRANSLATIONALE ONKOLOGIE AN DER UNIVERSITÄTSMEDIZIN DER JOHANNES GUTENBERG-UNIVERSITÄT MAINZ GGMBH
    Inventors: Ugur Sahin, Ozlem Tureci, Daniel Maurus
  • Patent number: 11713346
    Abstract: The present invention provides Claudin-18.2-specific immunoreceptors (T cell receptors and artificial T cell receptors (chimeric antigen receptors; CARs)) and T cell epitopes which are useful for immunotherapy.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: August 1, 2023
    Assignees: BioNTech Cell & Gene Therapies GmbH, TRON—Translationale Onkologie An Der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH
    Inventors: Ugur Sahin, Ozlem Tureci, Petra Oehm, Tana Omokoko, Andrea Breitkreuz, Karolina Anna Mroz, Lisa Hebich
  • Patent number: 11701413
    Abstract: The present invention relates to non-immunogenic RNA. This RNA forms the basis for the development of therapeutic agents for inducing tolerance towards an autoantigen and thus, for the treatment of autoimmune diseases.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: July 18, 2023
    Assignees: BioNTech SE, TRON—Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gemeinnützige GmbH
    Inventors: Ugur Sahin, Sebastian Kreiter, Christina Krienke, Jutta Petschenka, Lena Mareen Kranz, Mustafa Diken
  • Patent number: 11559587
    Abstract: The present invention is in the field of immunotherapy, in particular tumor immunotherapy. The present invention provides pharmaceutical formulations for delivering RNA to antigen presenting cells such as dendrite cells (DCs) in the spleen after systemic administration. In particular, the formulations described herein enable to induce an immune response after systemic administration of antigen-coding RNA.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: January 24, 2023
    Assignees: TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH, BioNTech SE
    Inventors: Ugur Sahin, Heinrich Haas, Sebastian Kreiter, Mustafa Diken, Daniel Fritz, Martin Meng, Lena Mareen Kranz, Kerstin Reuter
  • Patent number: 11541127
    Abstract: The present invention provides anti-CLDN18.2 antibody-drug conjugates which are effective for treating and/or preventing cancer diseases associated with cells expressing CLDN18.2, including gastric cancer, esophageal cancer, pancreatic cancer, lung cancer, ovarian cancer, colon cancer, hepatic cancer, head-neck cancer, and cancer of the gallbladder and metastases thereof.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: January 3, 2023
    Assignees: Astellas Pharma, Inc., TRON—Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gemeinnützige GmbH
    Inventors: Ugur Sahin, Ozlem Tureci, Korden Walter, Maria Kreuzberg, Rita Mitnacht-Kraus, Fabrice Le Gall, Stefan Jacobs
  • Patent number: 11504419
    Abstract: The present invention relates to a patient-specific tumor treatment targeting individual expression patterns of tumor antigens, in particular shared tumor antigens, and individual tumor mutations. In one aspect, the present invention relates to a method for preventing or treating cancer in a patient comprising the steps of: (i) inducing a first immune response against one or more tumor antigens in the patient, and (ii) inducing a second immune response against one or more tumor antigens in the patient wherein the second immune response is specific for cancer specific somatic mutations present in cancer cells of the patient.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: November 22, 2022
    Assignees: BioNTech SE, TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH
    Inventors: Ugur Sahin, Claudia Paret, Kirsten Vormbrock, Christian Bender, Jan Diekmann
  • Patent number: 11492628
    Abstract: The present invention relates to stabilization of RNA, in particular mRNA, and an increase in mRNA translation. The present invention particularly relates to a modification of RNA, in particular in vitro-transcribed RNA, resulting in increased transcript stability and/or translation efficiency. According to the invention, it was demonstrated that certain sequences in the 3?-untranslated region (UTR) of an RNA molecule improve stability and translation efficiency.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: November 8, 2022
    Assignees: BioNTech SE, TRON—Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH
    Inventors: Alexandra Orlandini Von Niessen, Stephanie Fesser, Britta Vallazza, Tim Beissert, Andreas Kuhn, Ugur Sahin, Marco Alexander Poleganov
  • Patent number: 11471522
    Abstract: The present invention relates to methods and compositions for stimulating an immune response. In particular, the present invention relates to immunostimulatory RNA molecules comprising sequences derived from an Influenza A virus nucleoprotein-encoding RNA molecule that act as adjuvants and/or immunostimulatory agents to enhance host immune responses.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: October 18, 2022
    Assignees: BIONTECH SE, TRON—TRANSLATIONALE ONKOLOGIE AN DER UNIVERSITÄTSMEDIZIN DER JOHANNES GUTENBERG-UNIVERSITÄT MAINZ GEMEINNÜTZIGE GMBH
    Inventors: Mahjoub Bihi, Ugur Sahin, Mustafa Diken, Thorsten Klamp
  • Patent number: 11447825
    Abstract: A method for the detection of impaired responsiveness of CD4+ T-cells to regulatory T-cells (Treg), Treg resistance, by measuring the expression levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PPARGC1A (PGC-1?) in activated CD4+ T-cells, in particular in patients suffering from relapsing remitting multiple sclerosis. The invention relates to an in vitro screening method for the detection of an autoimmune disease or a condition, comprising the steps of generating a functional gene expression profile by measuring the expression levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PPARGC1A (PGC-1?) in Treg-resistant CD4+ T-cells from patients suffering of an autoimmune disease or condition, and comparing the obtained gene expression profile with the expression profile from Treg-sensitive CD4+ T-cells from healthy controls.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: September 20, 2022
    Assignee: Universitätsmedizin der Johannes Gutenberg-Universität Mainz
    Inventors: Bettina Trinschek, Kazuki Satoh, Helmut Jonuleit
  • Patent number: 11384076
    Abstract: The present invention relates to small molecule compounds of formula (I) and their use as FLT3 inhibitors for the treatment of various diseases, such as acute myeloid leukemia (AML). The present invention further relates to methods of synthesizing the compounds and methods of treatment.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: July 12, 2022
    Assignees: UNIVERSITÄT REGENSBURG, UNIVERSITÄTSMEDIZIN DER JOHANNES GUTENBERG-UNIVERSITÄT MAINZ
    Inventors: Siavosh Mahboobi, Andreas Sellmer, Herwig Pongratz, Bernardette Pilsl, Oliver Krämer, Thomas Kindler, Mandy Beyer
  • Patent number: 11337922
    Abstract: The present invention relates to lipid particles comprising at least one cationic lipid, at least one water-soluble therapeutically effective compound and RNA. Further, the present invention relates to a pharmaceutical composition comprising such particles. Said pharmaceutical composition is useful for inducing an immune response. It is also useful in a prophylactic and/or therapeutic treatment of a disease involving an antigen. Furthermore, the present invention relates to a method for producing the particles.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: May 24, 2022
    Assignees: BioN Tech SE, Tron—Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg Universität Mainz GmbH
    Inventors: Hossam Hefesha, Ugur Sahin, Heinrich Haas, Sebastian Kreiter, Yves Hüsemann, Mustafa Diken, Kerstin Walzer
  • Patent number: 11318195
    Abstract: The present invention relates to compositions comprising polyplex formulations for delivery of RNA to a target organ or a target cell after parenteral administration, in particular after intramuscular administration. More precisely, the present invention relates to formulations for administration of RNA such as self-replicating RNA, in particular by intramuscular injection. In more detail, the formulations comprise polyplex particles from single stranded RNA and a polyalkyleneimine. The RNA may encode a protein of interest, such as a pharmaceutically active protein. Furthermore, the present invention relates to pharmaceutical products, comprising said RNA polyplex formulations for parenteral application to humans or to animals. The present invention relates as well to manufacturing of such pharmaceutical products, comprising, optionally, steps of sterile filtration, freezing and dehydration.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: May 3, 2022
    Assignees: BIONTECH SE, TRON-TRANSLATIONALE ONKOLOGIE AN DER UNIVERSITATSMEDIZIN DER JOHANNES GUTENBERG-UNIVERSITAT MAINZ GEMEINNUTZIGE GMBH
    Inventors: Ugur Sahin, Heinrich Haas, Annette Vogel, Daniel Zucker, Stephanie Erbar, Kerstin Walzer, Anne Schlegel, Sebastian Hörner, Sebastian Kreiter, Mustafa Diken, Jorge Moreno Herrero
  • Patent number: 11279757
    Abstract: The invention relates to antibodies directed against an epitope located within the C-terminal portion of CLDN6 which are useful, for example, in diagnosing cancer and/or in determining whether cancer cells express CLDN6.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: March 22, 2022
    Assignees: Astellas Pharma Inc., TRON—Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige Gmbh
    Inventors: Rita Mitnacht-Kraus, Stefan Wöll, Korden Walter, Özlem Türeci, Ugur Sahin
  • Patent number: 11248264
    Abstract: The present invention relates to the provision of vaccines which are specific for a patient's tumor and are potentially useful for immunotherapy of the primary tumor as well as tumor metastases. In one aspect, the present invention relates to a method for providing an individualized cancer vaccine comprising the steps: (a) identifying cancer specific somatic mutations in a tumor specimen of a cancer patient to provide a cancer mutation signature of the patient; and (b) providing a vaccine featuring the cancer mutation signature obtained in step (a). In a further aspect, the present invention relates to vaccines which are obtainable by said method.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: February 15, 2022
    Assignees: TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH, BioNTech SE
    Inventors: Ugur Sahin, Sebastian Kreiter, Mustafa Diken, Jan Diekmann, Michael Koslowski, Cedrik Britten, John Christopher Castle, Martin Löwer, Bernhard Renard, Tana Omokoko, Johannes Hendrikus De Graaf
  • Patent number: 11222711
    Abstract: The present invention relates to methods for predicting T cell epitopes. In particular, the present invention relates to methods for predicting whether modifications in peptides or polypeptides such as tumor-associated neoantigens are immunogenic or not. The methods of the invention are useful, in particular, for the provision of vaccines which are specific for a patient's tumor and, thus, in the context of personalized cancer vaccines.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: January 11, 2022
    Assignees: BioNTech SE, TRON—Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH
    Inventors: Ugur Sahin, Arbel David Tadmor, John Christopher Castle, Sebastian Boegel, Martin Löwer
  • Patent number: 11168337
    Abstract: The present invention embraces a RNA replicon that can be replicated by a replicase of alphavirus origin. The RNA replicon comprises sequence elements required for replication by the replicase, but these sequence elements do not encode any protein or fragment thereof, such as an alphavirus non-structural protein or fragment thereof. Thus, in the RNA replicon according to the invention, sequence elements required for replication by the replicase and protein-coding region(s) are uncoupled. According to the present invention the uncoupling is achieved by the removal of at least one initiation codon compared to a native alphavirus genomic RNA. In particular, the RNA replicon comprises a 5? replication recognition sequence, wherein the 5? replication recognition sequence is characterized in that it comprises the removal of at least one initiation codon compared to a native alphavirus 5? replication recognition sequence.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: November 9, 2021
    Assignees: Moniech RNA Pharmecenticais GmbH, TRON—Translationale Onkologie An Der Universitätsmedizín Der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH
    Inventors: Tim Beissert, Ugur Sahin, Mario Perkovic
  • Patent number: 11045418
    Abstract: The present invention relates to lipid particles comprising at least one cationic lipid, at least one water-soluble therapeutically effective compound and RNA. Further, the present invention relates to a pharmaceutical composition comprising such particles. Said pharmaceutical composition is useful for inducing an immune response. It is also useful in a prophylactic and/or therapeutic treatment of a disease involving an antigen. Furthermore, the present invention relates to a method for producing the particles.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: June 29, 2021
    Assignees: BioNTech RNA Pharmaceuticals GmbH, Tron-Translationale Onkologie an der Universitatsmedizin der Johannes Gutenberg-Universitat Mainz
    Inventors: Hossam Hefesha, Ugur Sahin, Heinrich Haas, Sebastian Kreiter, Yves Hüsemann, Mustafa Diken, Kerstin Walzer