Abstract: A method is provided for the preparation of nanoscale particle arrays having highly uniform crystals of metal, semiconductor or insulator materials grown in nanopores in the surface of a substrate, wherein the method uses pulse-reverse electrodeposition of metals with a rectangular or square waveform in order to generate high homogeneity of crystals and high in-plane or out-of-plane anisotropy in a controlled manner, enabling the creation of a variety of devices, including but not limited to high density storage media.
Type:
Application
Filed:
April 9, 2001
Publication date:
October 10, 2002
Applicant:
University of Alabama
Inventors:
Giovanni Zangari, Ming Sun, Robert M. Metzger
Abstract: A liquid crystal adaptive lens (LCAL) includes a reference plate, a liquid crystal layer disposed in electrical communication with the reference plate, and a plurality of closed-loop electrodes disposed in electrical communication with the liquid crystal layer. The closed-loop electrodes are adapted to receive a variable control voltage such that the refractive index of at least a portion of the liquid crystal layer is adjustable such that light passing through the liquid crystal layer is capable of being redirected. By including closed-loop electrodes, the liquid crystal layer of the LCAL is capable of having a radially varying refractive index.
Type:
Application
Filed:
January 22, 2002
Publication date:
October 10, 2002
Applicant:
University of Alabama in Huntsville
Inventors:
Yi Sun, Stephen T. Kowel, Gregory P. Nordin
Abstract: A valve for controlling the flow of a fluid comprises a housing, a flow-control element disposed within the housing, at least one seat operably engaging the flow-control element, and a biasing device for urging the seat and the flow-control element relative toward each other. In some embodiments, the valve also includes an actuating device operably engaging the flow-control element. The flow-control element, the seat, and the biasing device are comprised of a refractory material, and at least the biasing device is formed of a toughened refractory or ceramic material that is fully annealed so that porosity in the material is substantially eliminated and such that the material is substantially homogenous. In some embodiments, the seat, the flow-control element, the biasing device, and/or other components may be advantageously fabricated together as a unitary structure. An associated fabrication method is also provided.
Type:
Grant
Filed:
February 1, 2001
Date of Patent:
October 8, 2002
Assignee:
University of Alabama in Huntsville
Inventors:
James Edwin Smith, Jr., George O. Ellis, David Todd Ellis
Abstract: A method of stimulating polymerization of a tau protein, comprising the step of contacting said protein with a fatty acid. In another embodiment of the present invention, there is provided a method of stimulating polymerization of a amyloid peptide, comprising the step of contacting said peptide with a fatty acid.
Type:
Grant
Filed:
May 10, 2000
Date of Patent:
October 1, 2002
Assignee:
University of Alabama at Birmingham Research
Foundation
Abstract: Methods of using the chromium(III) complex represented by the formula [Cr3O(O2CCH2CH3)6(H2O)3]+ as a nutritional supplement, and for treating medical disorders associated with chromium deficiency. Nutritive and pharmaceutical compositions containing this chromium(III) complex are also provided.
Abstract: Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals.
Type:
Grant
Filed:
August 10, 1998
Date of Patent:
June 18, 2002
Assignee:
University of Alabama at Birmingham
Inventors:
Terry L. Bray, Larry J. Kim, Michael Harrington, Lawrence J. DeLucas
Abstract: An electrolytic plating process is provided for electrodepositing a nickel or nickel cobalt alloy which contains at least about 2% to 25% by atomic volume of phosphorous. The process solutions contains nickel and optionally cobalt sulfate, hypophosphorous acid or a salt thereof, boric acid or a salt thereof, a monodentate organic acid or a salt thereof, and a multidentate organic acid or a salt thereof. The pH of the plating bath is from about 3.0 to about 4.5. An electroplating process is also provided which includes electroplating from the bath a nickel or nickel cobalt phosphorous alloy. This process can achieve a deposit with high microyield of at least about 84 kg/mm2 (120 ksi) and a density lower than pure nickel of about 8.0 gm/cc. This process can be used to plate a deposit of essentially zero stress at plating temperatures from ambient to 70° C.
Type:
Grant
Filed:
December 8, 1999
Date of Patent:
June 18, 2002
Assignees:
University of Alabama in Huntsville, The United States of America as represented by the Marshall
Space Flight Center
Abstract: Lightweight and reactive metals can be produced from ore, refined from alloy, and recycled from metal matrix composites using electrolysis in electrolytes including an ionic liquid containing a metal chloride at or near room temperature. Low electric energy consumption and pollutant emission, easy operation and low production costs are achieved.
Type:
Application
Filed:
October 19, 2001
Publication date:
June 13, 2002
Applicant:
THE UNIVERSITY OF ALABAMA
Inventors:
Banqiu Wu, Ramana G. Reddy, Robin D. Rogers
Abstract: The present invention provides optical systems and methods that use a plurality of optical reflectors to fold the optical path of an optical beam used in the optical system. By folding the optical path of the optical beam, the optical system and method of the present invention can in one instance minimize the over-all volume and mass of the optical system. Specifically, the present invention provides an optical amplifier that has a plurality of active and passive reflectors. The passive reflectors are oriented to fold the optical beam in a minimized volume and direct the optical beam repeatedly at the active reflectors to amplify the optical beam to a selected power level. The folding aspects of the optical reflectors may also decrease the operating temperature of the optical system.
Abstract: The present invention provides a composition of matter, comprising: DNA encoding a viral Vpx protein fused to DNA encoding a protein. In another embodiment of the present invention, there is provided a composition of matter, comprising: DNA encoding a viral Vpr protein fused to DNA encoding a protein. The present invention further provides DNA, vectors and methods for expressing a lentiviral pol gene in trans, independent of the lentiviral gag-pol. A gene transduction element is optionally delivered to a lentiviral vector according to the present invention. Also provided are various methods of delivering a virus inhibitory molecule to a target in an animal. Further provided is a pharmaceutical composition.
Type:
Grant
Filed:
November 5, 1999
Date of Patent:
March 26, 2002
Assignee:
University of Alabama Research Foundation
Abstract: A method of making metal/refractory composites includes bubbling a reactive gas through a melt to form a foam including refractory particles. In continuous mode, the foam is separated from the melt and the melt replenished. Composites of lightweight metals reinforced with discontinuous refractory ceramic particles can be efficiently and economically produced.
Abstract: A valve for controlling the flow of a fluid comprises a housing, a flow-control element disposed within the housing, at least one seat operably engaging the flow-control element, and a biasing device for urging the seat and the flow-control element relative toward each other. In some embodiments, the valve also includes an actuating device operably engaging the flow-control element. The flow-control element, the seat, and the biasing device are comprised of a refractory material, and at least the biasing device is formed of a toughened refractory or ceramic material that is fully annealed so that porosity in the material is substantially eliminated and such that the material is substantially homogenous. In some embodiments, the seat, the flow-control element, the biasing device, and/or other components may be advantageously fabricated together as a unitary structure. An associated fabrication method is also provided.
Type:
Application
Filed:
February 1, 2001
Publication date:
November 8, 2001
Applicant:
University of Alabama
Inventors:
James Edwin Smith, George O. Ellis, David Todd Ellis
Abstract: A method for treating diverse pulp and paper products to produce a homogenous cellulosic feedstock comprises the steps of feeding diverse pulp and paper products into a vessel, introducing steam into the vessel while agitating the products, purging the gases from the vessel while agitating the products, sealing the vessel so that the vessel is pressure tight, saturating the products with steam at sufficient temperature and pressure to expand molecular structure of the products, while agitating the products, depressurizing the vessel to further enhance the molecular expansion of the products, and discharging the processed products. Alternatively, the method can be performed without purging the gases, if the temperature in the range of about 287° F. to about 312° F., and the pressure is in the range of about 40 to 65 psig.
Abstract: A flow-controlling device is provided for controlling the flow of a fluid. The device comprises a housing, a flow-control element disposed within the housing, at least one seat operably engaging the flow-control element, a biasing device operably engaging each seat for urging the seat into sealing engagement with the flow-control element, and an actuating device operably engaging the flow-control element. The seat operably engages the flow-control element and the biasing device operably engages the seat to urge the seat into a sealing engagement with the flow-control element. The flow-control element, the seat, and the biasing device are comprised of a refractory and/or toughened ceramic material that is fully annealed so that porosity in the material is substantially eliminated and such that the material is substantially homogenous. Components fabricated from such a ceramic are generally heat, corrosion, and wear resistant and are capable of substantial elongation without failure.
Type:
Application
Filed:
December 15, 2000
Publication date:
October 4, 2001
Applicant:
University of Alabama
Inventors:
James Edwin Smith, George O. Ellis, David Todd Ellis
Abstract: Methods of using the chromium(III) complex represented by the formula [Cr3O(O2CCH2CH3)6(H2O)3]+ as a nutritional supplement, and for treating medical disorders associated with chromium deficiency. nutritive and pharmaceutical compositions containing this chromium(III) complex are also provided.
Abstract: Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals.
Type:
Application
Filed:
August 10, 1998
Publication date:
July 5, 2001
Applicant:
UNIVERSITY OF ALABAMA
Inventors:
TERRY L. BRAY, LARRY J. KIM, MICHAEL HARRINGTON, LAWRENCE J. DELUCAS
Abstract: The invention provides an apparatus for measuring microgravity acceleration that includes an elongate flow chamber having a first end and a second end and a liquid contained therein. Each end of the chamber is engaged by a plug member that is positioned to block the flow of the liquid through the ends of the container. Each plug member is maintained at a different known temperature such that a temperature gradient is created across the flow chamber. Temperature sensors are immersed in the liquid, the sensors being spaced apart along a line intersecting the axis of the flow chamber and normal thereto. Quasi-steady components of acceleration can be calculated based on the difference in the temperatures measured by the temperature sensors.
Abstract: An improved optical scanning spectroscopic method and apparatus is provided that alternately scans the posterior portion of an eye with laser signals emitted by different ones of a plurality of lasers such that a data frame can be constructed that includes interlaced portions formed from signals returning from the posterior portion of the eye in response to illumination by laser signals emitted by different ones of the plurality of lasers. As such, the same data frame includes data attributable to the reflection of laser signals from each of the plurality of lasers even though the subject's eye is not subjected to simultaneous illumination by each of the lasers, thereby protecting the subject's eye.
Type:
Grant
Filed:
September 27, 1999
Date of Patent:
June 12, 2001
Assignee:
University of Alabama in Huntsville
Inventors:
Matthew H. Smith, Lloyd W. Hillman, Kurt R. Denninghoff, Russell A. Chipman
Abstract: Oral or peroral administration, including intragastrically, of killed whole pneumococci, lysate of pneumococci and isolated and purified PspA, as well as immunogenic fragments thereof, particularly when administered with an adjuvant such as cholera toxin provides protection in a host, animal or human, against pneumococcal infection, including colonization, and systemic infection, such as sepsis. The ability to elicit protection against pneumococcal colonization in a host prevents carriage among immunized individuals, which can lead to elimination of disease from the population as a whole.
Type:
Grant
Filed:
June 7, 1995
Date of Patent:
May 15, 2001
Assignee:
University of Alabama at Birmingham Research
Foundation
Inventors:
David E. Briles, Larry S. McDaniel, Masafumi Yamamoto, Hiroshi Kiyono