Patents Assigned to University of Basel
  • Patent number: 7756325
    Abstract: Disclosed is an improved algorithm for estimating the 3D shape of a 3-dimensional object, such as a human face, based on information retrieved from a single photograph by recovering parameters of a 3-dimensional model and methods and systems using the same. Beside the pixel intensity, the invention uses various image features in a multi-features fitting algorithm (MFF) that has a wider radius of convergence and a higher level of precision and provides thereby better results.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: July 13, 2010
    Assignee: University of Basel
    Inventors: Thomas Vetter, Sami Romdhani, Jean-Sebastian Pierrard
  • Patent number: 7657133
    Abstract: An apparatus for single analyte molecule detection includes: a light source (20) for generating excitation light; a dichroic mirror (22) disposed on a first path of excitation light generated by the light source, wherein the mirror directs excitation light into a fiber aligner (30); an optical transducer coupled to the light source by the fiber aligner, the optical transducer comprising an optical waveguide (40) made of dielectric material having a first dielectrical index; a photon detector (70) disposed to receive fluorescent back radiation, wherein when a test solution having a second dielectric index lower than the first index is provided and comprises one or more target molecules, excitation light is transmitted by the waveguide and exits a waveguide tip disposed in the test solution so as to excite one or more target molecules; subsequently, the waveguide transmits back radiation along a second path to the photon detector that detects the transmitted back radiation.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: February 2, 2010
    Assignee: University of Basel
    Inventors: Bert Hecht, Philippe Haas, Andreas Wild, Martin Hegner, Michel Calame
  • Patent number: 7650178
    Abstract: A magnetic sensor navigation system is disclosed, which includes: (a) a magnetic sensor array, including one or more magnetic non-Faradaic sensors; (b) a sensor interface operatively connected to receive a signal from each sensor of the array, wherein the sensor interface operates to generate a processed signal from one or more signals received from each sensor of the array; and (c) a processing and control unit connected to receive the processed signal, wherein the processing and control unit operates to calculate a spatial position of the sensor array using the processed signal when the sensor array is placed within a magnetic resonance environment of an MR scanner.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: January 19, 2010
    Assignee: University of Basel
    Inventor: Klaus Scheffler
  • Publication number: 20090293950
    Abstract: A photovoltaic cell, particularly a color-sensitized solar cell, comprises a conductive support substrate, coated with a metal oxide semiconductor layer, a color layer embodied so as to electronically interact with the metal oxide semiconductor layer, an electrolyte later that is applied to the color layer, and a counter-electrode which is connected to the electrolyte layer. The support substrate and/or the counter-electrode is/are made from a flexible fabric composed of a plurality of interwoven fibers.
    Type: Application
    Filed: May 14, 2007
    Publication date: December 3, 2009
    Applicants: SEFAR AG, THE UNIVERSITY OF BASEL, FACHHOCHSCHULE NORDWESTSCHWEIZ
    Inventors: Peter Chabrecek, Egbert Figgemeier, Uwe Pieles
  • Publication number: 20090239760
    Abstract: Disclosed is a method for producing new leads for drug candidates. The method employs a combinatorial approach for identifying high affinity ligands. The target may be unknown and/or may include one or more unknown binding sites. A method involving a combined screening and synthesis method for bi-site inhibitors is disclosed comprising: 1) determining if there is sufficient proximity between ligands binding to different sites of a target: e.g. by using spin-labelled ligands quenching can be measured with NMR if a first ligand and second allosteric ligand are in proximity 2) connecting both ligands having linkers, via in situ synthesis in the presence of the protein scaffold (e.g. target guided synthesis combined with fragment based self assembly). Click chemistry is a preferred embodiment here. Also disclosed are kits used in context of this method, leads discovered by the method and their use in drug development.
    Type: Application
    Filed: March 14, 2007
    Publication date: September 24, 2009
    Applicant: UNIVERSITY OF BASEL
    Inventors: Beat Ernst, Brian Cutting, Sachin V. Shelke
  • Patent number: 7567081
    Abstract: Disclosed are methods and apparatuses for generating susceptibility-related contrast images, as induced, e.g., by marker material interventional devices used for passive MR-guided interventions, or by particles or cells loaded with marker materials used for molecular imaging, cell-tracking or cell-labeling. Near a local magnetic field perturber a positive contrast signal emanates from local gradient compensation to form, e.g., a balanced SSFP type of echo, whereas everywhere else echoes are shifted outside of the data acquisition window.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: July 28, 2009
    Assignee: University of Basel
    Inventors: Oliver Bieri, Klaus Scheffler
  • Publication number: 20090121148
    Abstract: Ion sources or generators for focused ion beam emission (FIB) applications emitting ion beams into vacuum or a gas are used in industry and research for the characterization and processing of surfaces. With appropriate focusing, such ion beams can be confined to diameters of a few nanometers. The tip of technical FIB generators for producing such focused beams consists of a liquid metal, gallium in general, which tends to fluctuate during operation. This has a negative influence on the stability of the emission current and the focus definition. It is also possible to generate an FIB with solid tips, consisting of a solid metal, but such tips deteriorate rapidly during operation due to erosion of material from the tip apex. The present invention concerns a novel FIB source generating free space ion beams from a solid source but does not exhibit the above-mentioned erosion effect at the apex.
    Type: Application
    Filed: March 29, 2006
    Publication date: May 14, 2009
    Applicants: UNIVERSITY OF BASEL, UNIVERSITY OF ZUERICH
    Inventors: Dieter Pohl, Hans-Werner Fink, Julien Toquant, Conrad Escher, Sandra Thomann, Cornel Andreoli
  • Publication number: 20080272774
    Abstract: Disclosed are methods and apparatuses for generating susceptibility-related contrast images, as induced, e.g., by marker material interventional devices used for passive MR-guided interventions, or by particles or cells loaded with marker materials used for molecular imaging, cell-tracking or cell-labeling. Near a local magnetic field perturber a positive contrast signal emanates from local gradient compensation to form, e.g., a balanced SSFP type of echo, whereas everywhere else echoes are shifted outside of the data acquisition window.
    Type: Application
    Filed: May 3, 2007
    Publication date: November 6, 2008
    Applicant: UNIVERSITY OF BASEL
    Inventors: Oliver Bieri, Klaus Scheffler
  • Patent number: 7372267
    Abstract: Apparatus and methods of generating magnetization transfer contrast images in which signal to noise ratios are improved and/or in which image acquisition times are reduced. In certain embodiments, apparatus and methods which utilize sensitivity and/or non-sensitivity to magnetization transfer effects to improve the contrast of images which are generated. In certain additional embodiments, apparatus and methods for generating magnetization transfer contrast images which exhibit sensitivity to longitudinal and transverse relaxation times of bound and free proton pools, respectively.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: May 13, 2008
    Assignee: University of Basel
    Inventors: Oliver Bieri, Klaus Scheffler
  • Publication number: 20080089635
    Abstract: An apparatus for single analyte molecule detection includes: a light source (20) for generating excitation light; a dichroic mirror (22) disposed on a first path of excitation light generated by the light source, wherein the mirror directs excitation light into a fiber aligner (30); an optical transducer coupled to the light source by the fiber aligner, the optical transducer comprising an optical waveguide (40) made of dielectric material having a first dielectrical index; a photon detector (70) disposed to receive fluorescent back radiation, wherein when a test solution having a second dielectric index lower than the first index is provided and comprises one or more target molecules, excitation light is transmitted by the waveguide and exits a waveguide tip disposed in the test solution so as to excite one or more target molecules; subsequently, the waveguide transmits back radiation along a second path to the photon detector that detects the transmitted back radiation.
    Type: Application
    Filed: August 18, 2005
    Publication date: April 17, 2008
    Applicant: UNIVERSITY OF BASEL
    Inventors: Bert Hecht, Philippe Haas, Andreas Wild, Martin Hegner, Michel Calame
  • Patent number: 7319527
    Abstract: An optical sensor, in particular for a scanning force microscope, measures the deflection of a cantilever (3) using an optical resonator between the cantilever (3) and an output surface (12b) of a lens assembly (10). In order to form the resonator, output surface (12b) is concave and parallel to the wavefronts of the light within the resonator. This design provides a resonator of high stability and allows to keep the distance between lens assembly (10) and cantilever (3) comparatively large.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: January 15, 2008
    Assignee: University of Basel
    Inventors: Patrick Louis Theodorus Martin Frederix, Hans Joseph Hug
  • Patent number: 7259558
    Abstract: A method of nuclear magnetic resonance (NMR) imaging is proposed for the rapid detection of oscillatory motion of spins or charged particles to generate shear waves or oscillating electrical currents to induce alternating magnetic fields to the object being imaged, subjected to a fast train of radio-frequency (RF) pulses to induce within the sample a steady-state NMR signal. A scan using an NMR imaging system is carried out with a RF repetition time (TR) matched to the externally imposed oscillatory motion. Small oscillatory displacements of spins in combination with imaging gradients or oscillating magnetic fields related to charge motion generating alternating spin phase dispersions during the rf pulse train disturb the steady-state magnetization.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: August 21, 2007
    Assignee: University of Basel
    Inventors: Oliver Bieri, Klaus Scheffler
  • Patent number: 7112965
    Abstract: A nuclear magnetic resonance imaging method that utilizes a LINA-EPI gradient pulse sequence, comprising the steps of: generating a LINA-EPI gradient pulse sequence comprising a read gradient, a RF excitation pulse, a slice gradient, and a phase encoding gradient; generating substantially monotonous gradient noise as a result of generating the LINA-EPI gradient pulse sequence, wherein the substantially monotonous gradient noise is substantially without banking and minimizes confounding BOLD effects during imaging; and imaging a test subject using the LINA-EPI gradient pulse sequence.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: September 26, 2006
    Assignee: University of Basel
    Inventors: Klaus Scheffler, Erich Seifritz
  • Patent number: 7046004
    Abstract: A method of steady-state free precession MR imaging is provided that includes the steps of: (a) providing a balanced steady-state free precession imaging sequence that includes a plurality of phase encoding steps, wherein each phase encoding step comprises a phase encoding gradient and a slice selection gradient; and (b) acquiring imaging data by performing the plurality of phase encoding steps in sequence, wherein the imaging data is acquired is compensated for one or more effects due to eddy-currents, flow, or motion related artefacts due to the implementation of one or more artefact compensation strategies that consist of (i) “pairing” of consecutive phase encoding steps and of (ii) “through slice equilibration” of eddy-current and motion or flow related signal oscillations.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: May 16, 2006
    Assignee: University of Basel
    Inventors: Oliver Bieri, Klaus Scheffler
  • Publication number: 20050258829
    Abstract: A method of steady-state free precession MR imaging is provided that includes the steps of: (a) providing a balanced steady-state free precession imaging sequence that includes a plurality of phase encoding steps, wherein each phase encoding step comprises a phase encoding gradient and a slice selection gradient; and (b) acquiring imaging data by performing the plurality of phase encoding steps in sequence, wherein the imaging data is acquired is compensated for one or more effects due to eddy-currents, flow, or motion related artefacts due to the implementation of one or more artefact compensation strategies that consist of (i) “pairing” of consecutive phase encoding steps and of (ii) “through slice equilibration” of eddy-current and motion or flow related signal oscillations.
    Type: Application
    Filed: May 6, 2005
    Publication date: November 24, 2005
    Applicant: University of Basel
    Inventors: Oliver Bieri, Klaus Scheffler
  • Publication number: 20050245811
    Abstract: A magnetic sensor navigation system is disclosed, which includes: (a) a magnetic sensor array, including one or more magnetic non-Faradaic sensors; (b) a sensor interface operatively connected to receive a signal from each sensor of the array, wherein the sensor interface operates to generate a processed signal from one or more signals received from each sensor of the array; and (c) a processing and control unit connected to receive the processed signal, wherein the processing and control unit operates to calculate a spatial position of the sensor array using the processed signal when the sensor array is placed within a magnetic resonance environment of an MR scanner.
    Type: Application
    Filed: April 30, 2004
    Publication date: November 3, 2005
    Applicant: University of Basel
    Inventor: Klaus Scheffler
  • Publication number: 20050242810
    Abstract: A nuclear magnetic resonance imaging method that utilizes a LINA-EPI gradient pulse sequence, comprising the steps of: generating a LINA-EPI gradient pulse sequence comprising a read gradient, a RF excitation pulse, a slice gradient, and a phase encoding gradient; generating substantially monotonous gradient noise as a result of generating the LINA-EPI gradient pulse sequence, wherein the substantially monotonous gradient noise is substantially without banking and minimizes confounding BOLD effects during imaging; and imaging a test subject using the LINA-EPI gradient pulse sequence.
    Type: Application
    Filed: April 30, 2004
    Publication date: November 3, 2005
    Applicant: University of Basel
    Inventors: Klaus Scheffler, Erich Seifritz
  • Patent number: 6947311
    Abstract: This invention relates to the controlled two-dimensional structural transition of a dipole monolayer at a metal, semi-conducting or insulating interface. The dipole monolayer consists of objects/molecules with a permanent electric dipole moment. A transition between the structures of the molecular layer can be performed locally and reversibly by applying an electrical field and the structures/patterns can be reversibly switched many times between two different structures/states. Both of the two structures, the ordered and the disordered structures, are intrinsically stable without the presence of the switching electrical field. This controlled switch of the local layer structure can be used to change layer properties (i.e., mechanical, electrical, optical properties). The controlled reversible modifications of the dipole monolayer structures are usable as bit assignments in data storage applications for example.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: September 20, 2005
    Assignee: University of Basel
    Inventors: Simon Berner, Silvia Schintke, Luca Ramoino, Michael de Wild, Thomas A. Jung
  • Publication number: 20050002222
    Abstract: This invention relates to the controlled two-dimensional structural transition of a dipole monolayer at a metal, semi-conducting or insulating interface. The dipole monolayer consists of objects/molecules with a permanent electric dipole moment. A transition between the structures of the molecular layer can be performed locally and reversibly by applying an electrical field and the structures/patterns can be reversibly switched many times between two different structures/states. Both of the two structures, the ordered and the disordered structures, are intrinsically stable without the presence of the switching electrical field. This controlled switch of the local layer structure can be used to change layer properties (i.e., mechanical, electrical, optical properties). The controlled reversible modifications of the dipole monolayer structures are usable as bit assignments in data storage applications for example.
    Type: Application
    Filed: June 9, 2004
    Publication date: January 6, 2005
    Applicant: University of Basel
    Inventors: Simon Berner, Silvia Schintke, Luca Ramoino, Michael de Wild, Thomas Jung