Patents Assigned to University of Central Oklahoma
  • Patent number: 11913139
    Abstract: A method for controlling fiber cross-alignment in a nanofiber membrane, comprising: providing a multiple segment collector in an electrospinning device including a first and second segment electrically isolated from an intermediate segment positioned between the first and second segment, collectively presenting a cylindrical structure, rotating the cylindrical structure around a longitudinal axis proximate to an electrically charged fiber emitter; electrically grounding or charging edge conductors circumferentially resident on the first and second segment, maintaining intermediate collector electrically neutral; dispensing electrospun fiber toward the collector, the fiber attaching to edge conductors and spanning the separation space between edge conductors; attracting electrospun fiber attached to the edge conductors to the surface of the cylindrical structure, forming a first fiber layer; increasing or decreasing rotation speed of the cylindrical structure to alter the angular cross-alignment relationship b
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: February 27, 2024
    Assignee: UNIVERSITY OF CENTRAL OKLAHOMA
    Inventor: Maurice Haff
  • Patent number: 11208735
    Abstract: A method for controlling fiber cross-alignment in a nanofiber membrane, comprising: providing a multiple segment collector in an electrospinning device including a first and second segment electrically isolated from an intermediate segment positioned between the first and second segment, collectively presenting a cylindrical structure, rotating the cylindrical structure around a longitudinal axis proximate to an electrically charged fiber emitter; electrically grounding or charging edge conductors circumferentially resident on the first and second segment, maintaining intermediate collector electrically neutral; dispensing electrospun fiber toward the collector, the fiber attaching to edge conductors and spanning the separation space between edge conductors; attracting electrospun fiber attached to the edge conductors to the surface of the cylindrical structure, forming a first fiber layer; increasing or decreasing rotation speed of the cylindrical structure to alter the angular cross-alignment relationship b
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: December 28, 2021
    Assignee: UNIVERSITY OF CENTRAL OKLAHOMA
    Inventor: Maurice Haff
  • Patent number: 11103702
    Abstract: The present invention provides a method implementing a speech strategy based on zero crossing behavior of speech time waveforms; the zero crossing containing both spectral and temporal speech information. This method uses temporal information of speech to activate electrodes instead of spectral information; maps temporal segment durations to spatial durations along the basilar membrane inside the cochlea; and provides instantaneous, continuous information about speech to electrodes that stimulate the auditory nerve. Timing of oval window mechanical motion is represented by zero crossings which are used to activate electrodes implanted inside the cochlea. Motion of the tympanic membrane, and the oval and round windows, follow the speech signal temporal waveform. Positive segments of the temporal waveform cause inward displacement of the oval membrane from its stationary position and negative segments causes outward retraction of the membranes.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: August 31, 2021
    Assignee: University of Central Oklahoma
    Inventor: Mohamed G. Bingabr
  • Publication number: 20210212889
    Abstract: An assistive device for guiding performance of cardiopulmonary resuscitation (CPR) during cardiac arrest (CA), comprising an intelligent device and algorithm that present care givers realtime guidance and feedback on CPR quality using input from multiple invasive and noninvasive biometric monitoring devices. Input is combined and processed using artificial intelligence (AI) techniques to provide performance guidance displayed on a single monitor. Inputs include at least (a) heart rate, (b) end-tidal carbon dioxide—ETCO2, and (c) regional cerebral oxygen saturation—RSO2, which are processed to evaluate effectiveness of ongoing CPR and provide performance indicators in real time directed to increasing CPR effectiveness. Artificial intelligence functions evaluate effectiveness of CPR against standards of care as CPR is performed and provides actionable guidance to improve performance.
    Type: Application
    Filed: January 14, 2021
    Publication date: July 15, 2021
    Applicants: University of Central Oklahoma, Wisconsin Alumni Research Foundation
    Inventors: Nesreen ALSBOU, Awni AL-SUBU
  • Patent number: 11058521
    Abstract: The present invention enables modification of an intraosseous implant device that is not only biologically non-inert, but can stimulate bone and vascular growth; decrease localized inflammation; and fight local infections. The method of the present invention provides a fiber with any of the following modifications: (1) Nanofiber with PDGF, (2) Nanofiber with PDGF+BMP2, and (3) Nanofiber with BMP2 and Ag. Nanofiber can be modified with other growth factors that have been shown to improve bone growth and maturation—BMP and PDGF being the most common. Nanofiber can be applied on the surface of the implant in several ways. First, a spiral micro-notching can be applied on the implant in the same direction as the threads with the nanofibers embedded into the notches. Second, the entire surface of the implant may be coated with a mesh of nanofibers. Third, it can be a combination of both embedding and notching.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: July 13, 2021
    Assignee: UNIVERSITY OF CENTRAL OKLAHOMA
    Inventors: Vagan Tapaltsyan, Morshed Khandaker, Shahram Riahinezhad, Rami Mohanad Mahdi Alkhaleeli, Niyaf Nidhal Kadhem Alkadhem
  • Patent number: 11033238
    Abstract: A system for guiding and evaluating physical positioning, orientation and motion of the human body, comprising: a cloud computing-based subsystem including an artificial neural network and spatial position analyzer said cloud computing-based subsystem adapted for data storage, management and analysis; at least one motion sensing device wearable on the human body, said at least one motion sensing device adapted to detect changes in at least one of spatial position, orientation, and rate of motion; a mobile subsystem running an application program (app) that controls said at least one motion sensing device, said mobile subsystem adapted to capture activity data quantifying said changes in at least one of spatial position, orientation, and rate of motion, said mobile subsystem further adapted to transfer said activity data to said cloud computing-based subsystem, wherein said cloud computing-based subsystem processes, stores, and analyzes said activity data.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: June 15, 2021
    Assignee: University of Central Oklahoma
    Inventors: Jicheng Fu, Maurice Haff
  • Patent number: 10995425
    Abstract: A method and apparatus for fabricating multifunction membranes comprising cross-aligned nanofiber in an electrospinning device, the method comprising providing a multiple segment collector including at least a first segment, a second segment, and an intermediate segment to collectively present an elongated cylindrical structure; electrically charging an edge conductor circumferentially resident on the first segment and on the second segment; rotating the elongated cylindrical structure on a drive unit around a longitudinal axis; the elongated cylindrical structure holding electrospun fiber substantially aligned with the longitudinal axis when the edge conductors are excited with a charge of opposite polarity relative to charged fiber, and attracting electrospun fiber on to its surface around the longitudinal axis at least when the edge conductors are absent a charge or grounded and a charged electrode is positioned opposite a fiber emitter; and repeating the process multiple times to form layers of nanofibers
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: May 4, 2021
    Assignee: UNIVERSITY OF CENTRAL OKLAHOMA
    Inventor: Maurice Haff
  • Patent number: 10953133
    Abstract: A process providing a method to create 3D scaffolds using nano-scale fibers, comprising: deposition and alignment of a plurality of electrospun fiber layers on a substrate; application of a photosensitive biomedical polymer liquid to each fiber layer deposited on said substrate; deposition and cross-alignment of a plurality of electrospun fiber layers on said substrate; retaining said polymer liquid in place using said cross-aligned fiber layers; curing said polymer liquid on top of each fiber layer using UV light.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: March 23, 2021
    Assignee: University of Central Oklahoma
    Inventors: Morshed Khandaker, Shahram Riahinezhad
  • Patent number: 10932910
    Abstract: The present invention provides a process to functionalize nanofiber membrane (NFM) on a total joint replacement (TJR) implant surface to support bone ingrowth and reduce macrophage-associated inflammation, the process comprising amending the implant surface by laser cutting microgrooves greater than 100 ?m in depth to protect functional PCL NFM from applied loading, induce a higher amount of osteoblast cell function, increase implant-bone contact area, and serve as a reservoir for the local delivery of biomolecules to increase osseointegration of the implant; depositing aligned fibers on the implant surface, the fibers aligned in the direction of the microgrooves and collected in layers until a thickness less than 30 ?m is reached and preferably in the range of 1 ?m to 10 ?m. Biofunctionalized NFM are used to indirectly attach biomolecules on said implant surface, or extracellular matrix proteins with biomolecules are immobilized and deposited on the PCL NFM coated implant.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: March 2, 2021
    Assignee: University of Central Oklahoma
    Inventors: Morshed Khandaker, Shahram Riahinezhad, William Paul Snow
  • Patent number: 10912509
    Abstract: A system and method for detecting abnormal motor vehicle operation and providing notification and alerts to third parties, comprising: an impediment proximity detection subsystem including sensors at least mounted at external surfaces of said vehicle, said impediments consisting of at least fixed and moving objects external to said vehicle; a vital sign detection subsystem installed in said vehicle, including driver monitoring sensors and providing a measure of at least driver pulse rate and hand location; a controller installed in said vehicle, for receiving and processing sensor produced signals; an alarm subsystem installed in said vehicle, producing at least one of a visual or vibrational signal; a cloud interface subsystem including at least a WiFi transceiver installed in said vehicle, and a Google Cloud IoT Service or equivalent, and a vehicle to vehicle communication subsystem installed in said vehicle, using the BroadR-Reach® standard for automotive Ethernet or its evolving equivalents.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: February 9, 2021
    Assignee: UNIVERSITY OF CENTRAL OKLAHOMA
    Inventor: Nesreen Alsbou
  • Patent number: 10876223
    Abstract: An apparatus for accumulating cross-aligned fiber in an electrospinning device, comprising a multiple segment collector including at least a first segment, a second segment, and an intermediate segment, the intermediate segment positioned between the first and second segment to collectively present an elongated cylindrical structure; at least one electrically chargeable edge conductor circumferentially resident on the first segment and circumferentially resident on the second segment; a connection point on the first segment and on the second segment, the connection points usable for mounting the elongated cylindrical structure on a drive unit to rotate around a longitudinal axis; the elongated cylindrical structure holding electrospun fiber substantially aligned with the longitudinal axis when the edge conductors are excited with a charge of opposite polarity relative to charged fiber, and attracting electrospun fiber on to its surface around the longitudinal axis at least when the edge conductors are absent
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: December 29, 2020
    Assignee: University of Central Oklahoma
    Inventor: Maurice Haff
  • Patent number: 10640888
    Abstract: An apparatus for accumulating cross-aligned fiber in an electrospinning device, comprising a multiple segment collector including at least a first segment, a second segment, and an intermediate segment, the intermediate segment positioned between the first and second segment to collectively present an elongated cylindrical structure; at least one electrically chargeable edge conductor circumferentially resident on the first segment and circumferentially resident on the second segment; a connection point on the first segment and on the second segment, the connection points usable for mounting the elongated cylindrical structure on a drive unit to rotate around a longitudinal axis; the elongated cylindrical structure holding electrospun fiber substantially aligned with the longitudinal axis when the edge conductors are excited with a charge of opposite polarity relative to charged fiber, and attracting electrospun fiber on to its surface around the longitudinal axis at least when the edge conductors are absent
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: May 5, 2020
    Assignee: University of Central Oklahoma
    Inventor: Maurice Haff
  • Patent number: 10633766
    Abstract: An apparatus for collecting cross-aligned fiber threads, comprising an elongated assembly having a plurality of segments including at least a first segment, a second segment, and an intermediate segment, the first segment positioned at one end of the intermediate segment and the second segment positioned at an opposite end of the intermediate segment, each segment being electrically chargeable; an electrically chargeable emitter for electrospinning nanoscale fiber streams comprising charged fiber branches, the emitter having a tip positioned offset and between an edge of the first segment and an edge of the second segment; a support structure for rotating the elongated assembly about a longitudinal axis and applying an electrical charge to at least the edges of the first and second segment; at least one electrically chargeable steering electrode for attracting fiber streams, the at least one steering electrode chargeable with an electrical polarity opposing a charge applied to the emitter.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: April 28, 2020
    Assignee: University of Central Oklahoma
    Inventors: Maurice Haff, Morshed Khandaker, William Paul Snow
  • Patent number: 10415156
    Abstract: A method for separating out a continuous single thread of fiber from many fiber branches and controlling alignment and deposition of said fiber on a substrate, comprising: electrospinning synthetic polymer fiber streams from an electrically charged syringe needle; controlling the fiber using at least one electrically charged metallic disk rotating about an axis positioned below the needle; capturing the fiber using electrically grounded collector; extracting a single fiber branch thread from the polymer fiber streams, wherein the single fiber branch thread is attracted to and intercepted by the collector shape, and depositing the single fiber branch thread as substantially aligned fiber on the collector.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: September 17, 2019
    Assignee: University of Central Oklahoma
    Inventors: Morshed Khandaker, William Paul Snow
  • Patent number: 10286103
    Abstract: The present invention provides processes for combined applications of making grooves on an implant surface, applying MgO nanoparticles with PMMA cement, restricting the cement movement by PCL nanofiber and tethering biomolecules with PCL nanofiber to enhance mechanical stability and osseointegration of PMMA cement with bone. This is achieved through enhanced osteoconductive properties, roughness, and less viable fracture originating sites at the bone-cement interface. Such combined applications of nanoparticle and nanofiber on the mechanical stability and osseointegration of cemented implant is heretofore unknown, but as provided by the present invention can solve the debonding problem of cemented implant from bone.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: May 14, 2019
    Assignee: University of Central Oklahoma
    Inventors: Morshed Khandaker, Shahram Riahinezhad
  • Patent number: 10206780
    Abstract: The present invention implements a set of grooves/ridges created on Ti at the circumferential direction to increase surface area of implant in contact with bone. These grooves/ridges protect nanofiber matrix (NFM) made with Polycaprolactone (PCL) electrospun nanofiber (ENF) and collagen at the groove from physiological loading. Controlled fabrication of a ridge made with titanium nitride (TiN) around the circumference of Ti is provided using a plasma nitride deposition technique. PCL ENF may be deposited along the sub-micrometer grooves using the electrospin setup disclosed. The method provides for fabrication of microgroove on Ti using machining or TiN deposition and filling the microgrooves with the NFM. This method has proven through experimentation to be successful in increasing in vivo mechanical stability and promoting osseointegration on Ti implants. The immobilization of MgO NP and FN with the PCL-CG NFM on microgrooved Ti as provided in the invention optimizes biological performances of Ti.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: February 19, 2019
    Assignee: UNIVERSITY OF CENTRAL OKLAHOMA
    Inventors: Morshed Khandaker, Shahram Riahinezhad, William Paul Snow
  • Patent number: 10182766
    Abstract: A system for guiding and evaluating physical positioning, orientation and motion of the human body, comprising: a cloud computing-based subsystem including an artificial neural network and spatial position analyzer said cloud computing-based subsystem adapted for data storage, management and analysis; at least one motion sensing device wearable on the human body, said at least one motion sensing device adapted to detect changes in at least one of spatial position, orientation, and rate of motion; a mobile subsystem running an application program (app) that controls said at least one motion sensing device, said mobile subsystem adapted to capture activity data quantifying said changes in at least one of spatial position, orientation, and rate of motion, said mobile subsystem further adapted to transfer said activity data to said cloud computing-based subsystem, wherein said cloud computing-based subsystem processes, stores, and analyzes said activity data.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: January 22, 2019
    Assignee: University of Central Oklahoma
    Inventors: Jicheng Fu, Maurice Haff
  • Patent number: 10064736
    Abstract: The present invention provides a process by which both non-tissue engineered and tissue engineered cartilaginous-like structures can be fabricated. The process of the present invention provides a method to produce electrospun nanofiber-anchored NP gels. The present invention provides a functional design for novel engineered IVD. The present invention provides a method for fabrication of both non-tissue and tissue engineered IVDs. These cartilaginous-like structures can be used to produce replacements for degenerated natural IVD. The method of the present invention uses electrospun PCL nanofiber mesh to anchor the NP. The method of the present invention can create angle-ply AF structure around the circumference of NP to mimic the architecture of native IVD. The method of the present invention anchors the top and bottom sides of NP by using non-woven aligned or random nanofiber mesh to create scaffold for the generation of endplate (EP) tissue.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: September 4, 2018
    Assignee: University of Central Oklahoma
    Inventors: Morshed Khandaker, Shahram Riahinezhad
  • Patent number: 9987089
    Abstract: This invention relates to a device and a method for monitoring and optimizing photothermal therapy, using a high-power continuous-wave laser beam and a pulsed laser beam, both transmitted through a single soft, multi-mode optical fiber with a diffuse active tip, to interstitially irradiate the target tissue at the same time. The continuous-wave laser light induces photothermal effect and increases tissue temperature and the pulsed laser light produces a photoacoustic signal. The photoacoustic signal intensity is used to monitor the temperature changes in the target tissue and to guide the irradiation of the high-power laser to optimize the photothermal effect by adjusting the light intensity and irradiation time.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: June 5, 2018
    Assignee: University of Central Oklahoma
    Inventors: Wei R. Chen, Feifan Zhou, Zhifang Li, Hui Li
  • Patent number: 9974883
    Abstract: The present invention provides processes for combined applications of making grooves on an implant surface, applying MgO nanoparticles with PMMA cement, restricting the cement movement by PCL nanofiber and tethering biomolecules with PCL nanofiber to enhance mechanical stability and osseointegration of PMMA cement with bone. This is achieved through enhanced osteoconductive properties, roughness, and less viable fracture originating sites at the bone-cement interface. Such combined applications of nanoparticle and nanofiber on the mechanical stability and osseointegration of cemented implant is heretofore unknown, but as provided by the present invention can solve the debonding problem of cemented implant from bone.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: May 22, 2018
    Assignee: University of Central Oklahoma
    Inventors: Morshed Khandaker, Shahram Riahinezhad