Patents Assigned to University of Dayton
  • Patent number: 9451339
    Abstract: A sensor transmitter for communicating wirelessly a presence of a condition within a metal enclosure includes a power supply, at least one sensor where each sensor senses a presence of a condition, and a low frequency generator positioned within a metal enclosure and electrically coupled to the power supply and the at least one sensor. The low frequency generator transmits a low frequency wireless signal indicative of the presence of the condition within the metal enclosure when the condition is present at one sensor.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: September 20, 2016
    Assignee: University of Dayton
    Inventors: Robert E. Kauffman, J. Douglas Wolf
  • Patent number: 9403112
    Abstract: A system and device for filtering fluids using graphene oxide (GO) is provided. GO-based filters may be used for the efficient removal of microorganisms from organic and aqueous liquids and may be used to prevent fuel biodeterioration. Functionalization of graphene oxide with reactive oxygen functional groups provides physical properties to the GO including high solubility in polar solvents, good colloidal properties, low production costs, low toxicity, and a large surface area which can be decorated with antimicrobial agents including nanosilver. GO may be used as a filtration media for efficient removal of bacteria and to remove small amounts of water from hydrocarbon fuels. The GO filter media may be made of a plurality of GO particles, a structural core coated with GO, a non-porous structural membrane coated with GO, or a filtering membrane coated with GO. A method for sampling impurities found in an environmental sample is also provided.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: August 2, 2016
    Assignees: The United States of America As Represented By The Secretary of the Air Force, University of Dayton
    Inventors: Oscar N. Ruiz, K. A. Shiral Fernando, Christopher E. Bunker
  • Patent number: 9371451
    Abstract: Disclosed are articles comprising layered nanocrystalline calcite and methods for forming nanocrystalline calcite layers and compositions comprising nanocrystalline calcite layers.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: June 21, 2016
    Assignees: Clemson University Research Foundation, University of Dayton
    Inventors: Andrew S. Mount, Neeraj V. Gohad, Douglas C. Hansen, Karolyn Mueller Hansen, Mary Beth Johnstone
  • Patent number: 9364537
    Abstract: A porphyrin of general formula (I) having a transition metal (II) cation in its core and one or two mono-, di-, tri-, tetra- or penta-halophenyl groups and two or three pyridyl groups in the 5, 10, and/or 15 positions of the porphyrin ring contributing to a positive two or three charge neutralized by the presence of a respective number of anions. The porphyrin of the general formula (I) characterized by killing pseudomonas bacteria in the dark.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: June 14, 2016
    Assignee: UNIVERSITY OF DAYTON
    Inventors: Jayne B. Robinson, Shawn Swavey
  • Publication number: 20160051676
    Abstract: A porphyrin of general formula (I) having a transition metal (II) cation in its core and one or two mono-, di-, tri-, tetra- or penta-halophenyl groups and two or three pyridyl groups in the 5, 10, and/or 15 positions of the porphyrin ring contributing to a positive two or three charge neutralized by the presence of a respective number of anions. The porphyrin of the general formula (I) characterized by killing pseudomonas bacteria in the dark.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 25, 2016
    Applicant: UNIVERSITY OF DAYTON
    Inventors: Jayne B. Robinson, Shawn Swavey
  • Publication number: 20160055929
    Abstract: A vectorial optical field generator includes a radiation source a modulator surface, a first quarter wave plate, a second quarter wave plate, and an output plane. The radiation source emits an input radiation along a path and the modulator surface is positioned along the path and configured to modulate a phase, an amplitude, a polarization ratio, and a retardation of the input radiation along a fourth area of the modulator surface. The output plane is positioned along the path and receives output radiation resulting from modulating the input radiation with the modulator surface, the first quarter wave plate, and the second quarter wave plate.
    Type: Application
    Filed: June 17, 2015
    Publication date: February 25, 2016
    Applicant: University of Dayton
    Inventors: Qiwen Zhan, Wei Han, Wen Cheng
  • Publication number: 20150345010
    Abstract: Methods for magnetically enhanced physical vapor deposition are disclosed. The methods include providing a magnetically enhanced vapor deposition device defining a vapor deposition chamber, having a magnetic field source proximate a magnetron target that is positioned within the vapor deposition chamber and coupled to a power source, and having a substrate holder positioned within the vapor deposition chamber, placing a substrate in the substrate holder, activating the magnetic field source to provide a magnetic field that controls a charged particle flux within the physical vapor deposition chamber, and activating the power source thereby depositing a few-layer film of the material comprising the magnetron target onto the substrate. The few-layer film may be a transition metal dichalcogenide, such as MoS2.
    Type: Application
    Filed: September 30, 2014
    Publication date: December 3, 2015
    Applicants: University of Dayton, Government of the United States, as Represented by the Secretary of the Air Force
    Inventors: Christopher Muratore, John Bultman, Andrey A. Voevodin, Jianjun Hu
  • Patent number: 9178255
    Abstract: Liquid-free lithium-air cells are provided which incorporate a solid electrolyte having enhanced ionic transport and catalytic activity. The solid electrolyte is positioned between a lithium anode and an oxygen cathode, and comprises a glass-ceramic and/or a polymer-ceramic electrolyte including a dielectric additive.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: November 3, 2015
    Assignee: University of Dayton
    Inventors: Binod Kumar, Jitendra Kumar
  • Patent number: 9177185
    Abstract: Wireless sensors for detection of an analyte may include a sensor receiving antenna configured to receive interrogation pulses having an interrogation frequency, a DC converter, a relaxation oscillator circuit electrically, and a sensor transmitting antenna. The relaxation oscillator circuit may include a capacitance element that defines a response-pulse frequency of the wireless sensor. The capacitance element may include an interdigitated capacitor coated with a detection layer of a functional material having a dielectric constant that defines the dielectric constant of the interdigitated capacitor. This dielectric constant changes when the functional material is exposed to the analyte, thereby changing the response-pulse frequency of the relaxation oscillator circuit to an analyte-exposure frequency indicative of the exposure of the functional material to the analyte. Wireless systems for detecting an analyte may include a wireless sensor that communicates with an interrogation module.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: November 3, 2015
    Assignee: University of Dayton
    Inventor: Mark Alan Patterson
  • Patent number: 9143687
    Abstract: A method of processing a motion blurred image from an imaging device to recover a latent sharp image. The method includes capturing a motion blurred image signal through the imaging device, computing a second signal as a two-dimensional wavelet transform of the motion blurred image signal, and using the second signal to perform a first autocorrelation analysis to estimate the blur kernel. After estimating the blur kernel, a local autocorrelation analysis yields a blur kernel length and direction at each pixel location of the motion blurred image. In addition, the second signal is denoised and the discrete wavelet transform coefficients reconstructed from the blur kernel length and direction. Performing an inverse discrete wavelet transform of the discrete wavelet transform coefficients recovers the latent sharp image.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 22, 2015
    Assignee: University of Dayton
    Inventors: Keigo Hirakawa, Yi Zhang
  • Patent number: 9109354
    Abstract: A modular structure formed by panels is disclosed, having a center compartment and first and second side compartments coupled to the opposing sides of the center compartment. Each panel of the modular structure is joined to each respective adjacent panel via a panel joining assembly to substantially prevent moisture from entering the modular structure. An upper roof panel coupled to the center compartment is joined to first and second lower roof panels coupled to the first side compartment and the second side compartment, respectively, via first structural joining assemblies so that the upper roof panel is elevated relative to the first and second lower roof panels to substantially prevent moisture from entering the modular structure.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: August 18, 2015
    Assignee: University of Dayton
    Inventors: Elias Toubia, Danny Tilton
  • Patent number: 9099758
    Abstract: A lithium-air cell is provided which incorporates a cathode comprised of a lithium aluminum germanium phosphate (LAGP) glass-ceramic material for facilitating an oxygen reduction reaction. The lithium-air cell further includes a lithium anode and a solid electrolyte which may be in the form of a membrane comprising LAGP glass-ceramic and/or polymer ceramic materials.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: August 4, 2015
    Assignee: University of Dayton
    Inventors: Binod Kumar, Jitendra Kumar
  • Publication number: 20150213884
    Abstract: A resistive memory array partitioned into a plurality of memory units is disclosed. Each memory unit includes a plurality of resistive memory elements, a plurality of row lines, a plurality of column lines, a plurality of row select switching devices, and a plurality of column select switching devices. Each resistive memory element is in communication with one of the row lines and one of the column lines. Each row line is in communication with a corresponding one of the row select switching devices. Each column line is in communication with a corresponding one of the column select switching devices.
    Type: Application
    Filed: January 30, 2014
    Publication date: July 30, 2015
    Applicant: UNIVERSITY OF DAYTON
    Inventors: Tarek M. Taha, Chris Yakopcic
  • Patent number: 9055178
    Abstract: A method for generating a high dynamic range image. An image is captured using a Bayer pattern color filter array to generate raw pixel sensor data for the image. The pixel sensor data is separated into highpass (ZiHP) and lowpass (ZiLP) components. The color components of ZiHP are pooled to yield an achromatic highpass data set {circumflex over (X)}iHP. Saturated pixels in the ZiLP components are corrected by borrowing across spectrums to yield the low pass data set {circumflex over (X)}iLP, and the high dynamic range image is computed as {circumflex over (X)}={circumflex over (X)}iLP+{circumflex over (X)}iHP 1. A camera system incorporating this method is also provided.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: June 9, 2015
    Assignee: University of Dayton
    Inventor: Keigo Hirakawa
  • Patent number: 9012710
    Abstract: Fuel compositions containing an isomerized component of a single carbon number may contain at least 97 wt. %, based on the total weight of the fuel composition, of an isomerized component consisting of aliphatic paraffin isomers all having the formula CnH2n+2, where 10?n?22 and n has the same value for each aliphatic paraffin isomer in the isomerized component. The fuel compositions have a normal alkane content of less than 10 wt. %, based on the total weight of the fuel composition. Methods for preparing the fuel compositions include hydroisomerizing a normal alkane starting material to form an isomerized mixture and subsequently removing remnant normal alkanes from the isomerized mixture by solvent dewaxing and/or distillation. Some of the fuel compositions may have freezing points at or below ?47° C., making them amenable for use a surrogate fuels in the place of JP-8.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: April 21, 2015
    Assignee: University of Dayton
    Inventors: Heinz J. Robota, Jhoanna C. Alger
  • Patent number: 9011572
    Abstract: A method of generating hydrogen gas from the reaction of stabilized aluminum nanoparticles with water is provided. The stabilized aluminum nanoparticles are synthesized from decomposition of an alane precursor in the presence of a catalyst and an organic passivation agent, and exhibit stability in air and solvents but are reactive with water. The reaction of the aluminum nanoparticles with water produces a hydrogen yield of at least 85%.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: April 21, 2015
    Assignee: University of Dayton
    Inventors: Christopher E. Bunker, K. A. Shiral Fernando, Elena A. Guliants, Marcus J. Smith, Barbara A. Haruff
  • Patent number: 9000866
    Abstract: A parallel capacitor varactor shunt switch device may include a shunt layer, a coplanar waveguide (CPW) layer, and a tunable thin film dielectric layer that is interposed between the shunt layer and the CPW layer. The tunable thin film dielectric layer electrically isolates the shunt layer from the CPW layer. The shunt layer includes a plurality of parallel shunt lines. The CPW layer includes a CPW signal transmission line with two CPW ground lines parallel to the CPW signal transmission line. A plurality of varactor areas equal in number to the plurality of parallel shunt lines are defined in the CPW signal transmission line, each varactor area corresponding to an overlap of the CPW signal transmission line with a respective shunt line and each respective parallel shunt line and its corresponding varactor area defines a capacitor.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: April 7, 2015
    Assignee: University of Dayton
    Inventor: Guru Subramanyam
  • Patent number: 8974904
    Abstract: A nanocomposite dry adhesive. The nanocomposite dry adhesive includes a substrate; and an array of vertically aligned single-walled carbon nanotubes or vertically aligned multi-walled carbon nanotubes on the substrate, wherein the nanocomposite dry adhesive utilizes the array of single-walled carbon nanotubes or multi-walled carbon nanotubes as synthesized, the as synthesized single-walled carbon nanotubes being substantially free of randomly entangled nanotube segments on top of the vertically aligned single-walled carbon nanotubes, the as synthesized multi-walled carbon nanotubes having randomly entangled nanotube segments on top of the vertically aligned multi-walled carbon nanotubes; wherein the dry adhesive has a normal adhesion strength of at least about 5 N·cm?2, and a shear adhesion strength of at least about 13 N·cm?2. Methods of making a nanocomposite dry adhesive are also described.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: March 10, 2015
    Assignee: University of Dayton
    Inventors: Liming Dai, Liangti Qu, Morley O. Stone
  • Patent number: 8957817
    Abstract: A coplanar waveguide (CPW) square-ring slot antenna for use in wireless communication systems is miniaturized and reconfigurable by the integration of ferroelectric (FE) BST (barium strontium titanate) thin film varactors therein. The slot antenna device includes a sapphire substrate, top and bottom metal layers, and a thin ferroelectric BST film layer, where the FE BST varactors are integrated at the back edge of the antenna on the top metal layer.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: February 17, 2015
    Assignee: University of Dayton
    Inventors: Hai Jiang, Guru Subramanyam
  • Patent number: 8922873
    Abstract: Tunable light sources having a single optical parametric generation (OPG) source that results in an amplified, narrow bandwidth seed beam and methods of tuning therewith are disclosed. The tunable light source may include a polarization rotator to rotate a pump beam before a first pass through an OPG, and a linear-to-circular polarization device to polarize the pump beam directed back toward the OPG for a second pass therethrough. Alternately, the tunable light source may include an OPG source through which a pump beam passes only in the first direction, a separator that separates a signal beam from the pump beam exiting from the OPG, a narrowband wavelength filter that receives the signal beam and generate a seed beam, and a reflecting surface that directs the seed beam back through the OPG (opposite the first direction) to seed the back part of the pulse of the pulse laser.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: December 30, 2014
    Assignee: University of Dayton
    Inventor: Peter Elliott Powers