Patents Assigned to University of Dayton
  • Patent number: 7349078
    Abstract: In accordance with one embodiment of the present invention, a method of characterizing a lens is provided. According to the method, an optical source such as a laser is configured to generate a collimated beam that is focused along an optical axis at a distance fext. A test lens is placed along the optical axis, wherein the test lens is characterized by an effective focal length fi that is substantially independent of incident irradiance. An output beam generated from the focused optical source and the test lens defines an output intensity profile at an observation plane located a distance Z0 from the focal point of the optical source. The on-axis intensity I of the output intensity profile along the optical axis at the observation plane is monitored as the placement of the test lens along the optical axis is varied. A z-scan signature of the test lens is generated from the monitored intensity I.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: March 25, 2008
    Assignee: University of Dayton
    Inventors: Partha P. Banerjee, Yasser A. Abdelaziez
  • Publication number: 20080025905
    Abstract: A composition is provided in which carbon nanofibers are functionalized with at least one moiety where the moiety or moieties comprise at least one bivalent radical. The composition can include a nanocomposite, such as polyimide films. Methods for making functionalized carbon nanofibers and nanocomposites are also provided.
    Type: Application
    Filed: July 27, 2006
    Publication date: January 31, 2008
    Applicant: University of Dayton
    Inventors: David H. Wang, Michael J. Arlen, Loon-Seng Tan, Richard A. Vaia
  • Publication number: 20080022775
    Abstract: A non-contact thermo-elastic property measurement and imaging system and method thereof are described. Acoustic energy is incident on a first surface of a specimen under test. The acoustic energy is converted partially into heat by the specimen, causing a slight increase in the temperature in a region of interaction. The temperature increase is imaged using a high sensitivity infrared camera. Presence of defects (surface and subsurface) in the material modifies the distribution of temperature. An image of temperature distribution can be used for nondestructive testing and evaluation of materials. The temperature change in the specimen caused by acoustic excitation is related to thermal and elastic properties of the material. A measurement of the change in the temperature as a function of the amplitude of incident excitation can be used for direct measurement of thermo-elastic property of the specimen.
    Type: Application
    Filed: July 31, 2006
    Publication date: January 31, 2008
    Applicant: University of Dayton
    Inventors: Shamachary Sathish, Richard Reibel, John T. Welter, Charles Buynak
  • Patent number: 7305094
    Abstract: A system and method for actively damping boom noise within an enclosure such as an automobile cabin. The system comprises an acoustic wave sensor, a motion sensor, an acoustic wave actuator, a first electronic feedback loop, and a second electronic feedback loop. The enclosure defines a plurality of low-frequency acoustic modes that can be induced/excited by the enclosure cavity, by the structural vibration of a panel of the enclosure, by idle engine firings, and a combination thereof. The acoustic wave actuator is substantially collocated with the acoustic wave sensor within the enclosure. The motion sensor can be secured to a panel of the enclosure.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: December 4, 2007
    Assignee: University of Dayton
    Inventor: Reza Kashani
  • Patent number: 7294211
    Abstract: Conversion coatings based on cobalt are described for substrate metals such as aluminum, zinc, magnesium, titanium, cadmium, silver, copper, tin, lead, cobalt, zirconium, beryllium, or indium, their alloys, or items coated with these metals. The conversion coating contains a trivalent or tetravalent cobalt/valence stabilizer complex. The coating bath may also contain a preparative agent or solubility control agent. The oxidized cobalt is present in the coating in a “sparingly soluble” form. The valence stabilizers can be either inorganic or organic in nature. Cobalt/valence stabilizer combinations are chosen based on the well-founded principles of cobalt coordination chemistry. A number of cobalt/valence stabilizer combinations that match the performance of conventional hexavalent chromium systems are presented.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: November 13, 2007
    Assignee: University of Dayton
    Inventors: Jeffrey Allen Sturgill, Andrew Wells Phelps, Joseph Thomas Swartzbaugh
  • Patent number: 7291217
    Abstract: A corrosion-inhibiting pigment comprising a rare earth element and a valence stabilizer combinded to form a rare earth/valence stabilizer complex. The rare earth element is selected from cerium, terbium, praseodymium, or a combination thereof, and at least one rare earth element is in the tetravalent oxidation state. An inorganic or organic material is used to stabilize the tetravalent rare earth ion to form a compound that is sparingly soluble in water. Specific stabilizers are chosen to control the release rate of tetravalent cerium, terbium, or praseodymium during exposure to water and to tailor the compatibility of the powder when used as a pigment in a chosen binder system. Stabilizers may also modify the processing and handling characteristics of the formed powders. Many rare earth-valence stabilizer combinations are presented that can equal the performance of conventional hexavalent chromium systems.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: November 6, 2007
    Assignee: University of Dayton
    Inventors: Andrew Wells Phelps, Jeffrey Allen Sturgill, Joseph Thomas Swartzbaugh
  • Patent number: 7265198
    Abstract: A sulfonated polyarylenethioethersulfone polymer and copolymer. The sulfonated polyarylenethioethersulfone polymer and copolymer comprises the reaction product of an aromatic dihalo functionality sulfonated monomer, an aromatic dithiol monomer, and optionally an aromatic dihalo functionality monomer. The invention also relates to methods of making the sulfonated polyarylenethioethersulfone polymer and copolymer, and to membranes made from the sulfonated polyarylenethioethersulfone polymer and copolymer.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: September 4, 2007
    Assignee: University of Dayton
    Inventors: Thuy D. Dang, Michael F. Durstock, Zongwu Bai, Matthew J. Dalton
  • Publication number: 20070176217
    Abstract: A ferroelectric varactor suitable for capacitive shunt switching is disclosed. High resistivity silicon with a SiO2 layer and a patterned metallic layer deposited on top is used as the substrate. A ferroelectric thin-film layer deposited on the substrate is used for the implementation of the varactor. A top metal electrode is deposited on the ferroelectric thin-film layer forming a CPW transmission line. By using the capacitance formed by the large area ground conductors in the top metal electrode and bottom metallic layer, a series connection of the ferroelectric varactor with the large capacitor defined by the ground conductors is created. The large capacitor acts as a short to ground, eliminating the need for vias. The concept of switching ON and OFF state is based on the dielectric tunability of the ferroelectric thin-films. At 0 V, the varactor has the highest capacitance value, resulting in the signal to be shunted to ground, thus isolating the output from the input.
    Type: Application
    Filed: October 15, 2004
    Publication date: August 2, 2007
    Applicant: UNIVERSITY OF DAYTON
    Inventors: Guru Subramanyam, Andrei Vorobiev, Spartak Gevorgian
  • Patent number: 7235142
    Abstract: Rinsing or sealing solutions based on cobalt are described for barrier films such as anodic coatings, phosphate coatings, or “black oxide” coatings. The treated films contain a trivalent or tetravalent cobalt/valence stabilizer complex. The rinsing or sealing bath may also contain an optional preparative agent or an optional solubility control agent. The oxidized cobalt is present in the coating in a “sparingly soluble” form. The valence stabilizers can be either inorganic or organic in nature. Cobalt/valence stabilizer combinations are chosen based on the well-founded principles of cobalt coordination chemistry. A number of cobalt/valence stabilizer combinations that match the performance of conventional hexavalent chromium systems are presented.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: June 26, 2007
    Assignee: University of Dayton
    Inventors: Jeffrey Allen Sturgill, Andrew Wells Phelps, Joseph Thomas Swartzbaugh
  • Publication number: 20070129255
    Abstract: Nanometer-sized non-superconducting particulates in superconductive REBCO films, where RE is a rare earth metal, for flux pinning enhancement and a method of forming are disclosed. A target with a second phase material sector portion and a superconductive material portion is used in a pulse laser deposition process to form films on substrates according to the present invention. The films consist of 10-20 nm-sized precipitates. In a 0.5 ?m thick film, a transport critical current density (Jc)>3 MA/cm2 at 77K in self-field was measured. In one embodiment, magnetization Jc at 77 K and 65K showed significant improvements in a composite YBCO films with fine precipitates produced according to the present invention as compared to non-doped (standard) YBCO films (>10 times increase at 9 T, 65 K).
    Type: Application
    Filed: December 1, 2006
    Publication date: June 7, 2007
    Applicant: University of Dayton
    Inventors: Chakrapani Varanasi, Paul Barnes
  • Publication number: 20070092927
    Abstract: A modified particle. The modified particle comprises: a semiconductor particle which is photoactivatable; and a modifier molecule attached to the semiconductor particle, wherein the modifier molecule includes an electrochemically reversible redox active site which is photoexcitable. Bioconjugated nanoparticle probes, Redox-NSs and methods of using these modified particles are also described.
    Type: Application
    Filed: June 12, 2006
    Publication date: April 26, 2007
    Applicant: University of Dayton
    Inventors: Jay Johnson, Elmo Blubaugh
  • Patent number: 7208551
    Abstract: Polyaryleneetherketone triphenylphosphine oxide compositions incorporating cycloaliphatic units are provided which may be used as a polymeric binders in thermal control coatings for use in space environments. A method is also provided for synthesizing the polyaryleneetherketone triphenylphosphine oxide compositions. A method is also provided for synthesizing the monomeric compositions used to make the polyaryleneetherketone triphenylphosphine oxide compositions.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: April 24, 2007
    Assignee: University of Dayton
    Inventors: Thuy D. Dang, Matthew J. Dalton, Narayanan Venkatasubramanian, Joel A. Johnson, William A. Feld
  • Patent number: 7182853
    Abstract: The invention is a redox control and monitoring platform that is to be used in conduction with another detection scheme. The platform includes a portion of an electrochemical control. The electrochemical control can be operated to control and measure the redox environment of a sample. The electrochemical control can be provided in a multiplicity of test regions to allow high throughput analysis of a multiplicity of samples. The present method and system allows the determination of the effect of the change in redox environment on the binding or other activity of the species in the sample that is directly affected by the redox environment.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: February 27, 2007
    Assignee: University of Dayton
    Inventor: Jay Johnson
  • Patent number: 7043967
    Abstract: The present invention is a compact apparatus and method that provides an efficient manner for monitoring the condition and level of a functional fluid directly in operating equipment. A sensor device is provided that includes a plurality of liquid sensors and a plurality of vapor sensors that when used in conjunction with one another at different temperatures, can provide a thorough evaluation of the oxidative degradation, liquid contamination and solid contamination of the fluid to detect the end of the useful life of the fluid. By providing liquid sensors and vapor sensors on the same device, the present invention allows for a compact, efficient, and economically feasible manner to monitor the condition of fluid as well as detecting abnormal operating conditions prior to further component damage and eventual equipment failure.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: May 16, 2006
    Assignee: University of Dayton
    Inventors: Robert E. Kauffman, James D. Wolf
  • Patent number: 7029603
    Abstract: A method of reinforcing a polymeric material with carbon nanofibers is provided in which carbon nanofibers are combined with a polymer and a solvent for the polymer to form a substantially homogeneous mixture, followed by removal of the solvent by evaporation or coagulation. The resulting conductive polymeric nanocomposite material exhibits high electrical and thermal conductivity, enhanced mechanical strength, abrasion resistance, and dimensional stability.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: April 18, 2006
    Assignee: University of Dayton
    Inventors: Chyi-Shan Wang, Max D. Alexander
  • Patent number: 7030463
    Abstract: Electrically tunable electromagnetic bandgap (“TEBG”) structures using a ferroelectric thin film on a semiconductor substrate, tunable devices that include such a TEBG structure, such as a monolithic microwave integrated circuit (“MMIC”), and a method producing such a TEBG structure are disclosed. The present invention provides a semiconductive substrate having an oxide layer, a first conductive layer positioned on the oxide layer, a ferroelectric layer covering the first conductive layer, and a second conductive layer positioned on a surface of the tunable ferroelectric layer. The use of the ferroelectric layer, which have a DC electric field dependent permittivity, enables a small size, tunable EBG structure.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: April 18, 2006
    Assignee: University of Dayton
    Inventors: Guru Subramanyam, Spartak Gevorgian
  • Patent number: 6994755
    Abstract: Disclosed are methods for producing compositionally modified sintered RE—Fe—B-based rare earth permanent magnets, by the addition of small amounts of Nd, Cu, Ti, Nb, or other transition metals, and mixtures thereof, to maximize fracture toughness with corresponding improved machinability, while maintaining maximum energy product, said method comprising the steps of: (a) prepare a magnetic composition; (b) melt the composition and form powders with an average particle size smaller than 5 microns from the same; (c) press the powder under a magnetic field to obtain green compacts, which are then sintered at from about 1030° C. to 1130° C., and heat treating the sintered material at from about 570° C. to 900° C.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: February 7, 2006
    Assignees: University of Dayton, Electron Energy Corporation
    Inventors: Shiqiang Liu, Jinfang Liu
  • Patent number: 6986970
    Abstract: A colloidal electrolyte for an electrochemical device. The colloidal electrolyte includes a liquid electrolyte selected from liquid organic electrolytes, or liquid inorganic electrolytes free of sulfuric acid; and a ceramic particle phase dispersed in the liquid electrolyte, wherein the colloidal electrolyte has increased conductivity in the electrochemical device compared to the conductivity of the liquid electrolyte alone. The colloidal electrolytes will suppress flammability and flowability.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: January 17, 2006
    Assignee: University of Dayton
    Inventors: Binod Kumar, Stanley J. Rodrigues
  • Patent number: 6966953
    Abstract: Compositionally modified, sintered RE-Fe—B-based rare earth permanent magnets demonstrate the optimum combination of mechanical and magnetic properties, thereby maximizing fracture toughness with corresponding improved machinability, while maintaining the maximum energy product (BH)max.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: November 22, 2005
    Assignees: University of Dayton, Electron Energy Corporation
    Inventors: Shiqiang Liu, Jinfang Liu
  • Patent number: 6833124
    Abstract: A process for recovery of hexavalent chromium from waste streams. The method includes providing a waste stream containing hexavalent chromium, reacting a soluble non-toxic precipitating reagent with the hexavalent chromium to form an insoluble precipitating reagent-chromate precipitate, and recovering the insoluble precipitating reagent-chromate precipitate. It may optionally include reacting the insoluble precipitating reagent-chromate precipitate with an acidic solution to form an insoluble precipitating reagent precipitate and a soluble hexavalent chromium compound, and recovering the soluble hexavalent chromium compound. The process may also include reacting the insoluble precipitating reagent precipitate with a solubilizing reagent to form the soluble non-toxic precipitating reagent.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: December 21, 2004
    Assignee: University of Dayton
    Inventors: Andrew Wells Phelps, Jeffrey Allen Sturgill, Joseph Thomas Swartzbaugh