Patents Assigned to University of Hong Kong
  • Publication number: 20230417307
    Abstract: A muscle-like actuator comprises a motor with a rotatable drive shaft and a string with a shear thickening fluid (STF) embedded therein. One end of the string is attached to the drive shaft and the other end is connected to a load to form a twisted string actuator (TSA). By controlling the speed and current of the motor, the characteristics of the actuator can be changed. Multiple strings may be located in a flexible soft tube to improve the mechanical properties of the actuator.
    Type: Application
    Filed: June 26, 2023
    Publication date: December 28, 2023
    Applicant: The University of Hong Kong
    Inventors: Ning XI, Qingqing ZHANG, Yafei ZHAO
  • Publication number: 20230420247
    Abstract: A thin film (Ga 0.5%, Cu 8%) co-doped ZnO with high dielectric constant and high optical transmittance in the visible light range is formed via a pulse laser deposition method. The steps of the method involve installing a sapphire based substrate mounted on a sample holder into a pulse laser deposition chamber; and installing a ZnO ceramic target containing designed Ga and Cu concentrations in the chamber. Then the chamber is evacuated until the pressure achieves 5e-4 Pa., at which point the substrate is heated to about 600 degrees C. Next oxygen gas is introduced into the chamber and adjusted to a pressure of about 5 Pa. The rotation speed of the substrate holder and target holder are adjusted to about 10 r/min. Finally, the laser beam is applied to the target to ablate it sufficiently to generate a plasma of ionized atoms that are deposited on the substrate to form the film with the same composition same as the target.
    Type: Application
    Filed: January 6, 2022
    Publication date: December 28, 2023
    Applicant: THE UNIVERSITY OF HONG KONG
    Inventors: Dong HUANG, Chi Chung Francis LING
  • Patent number: 11853387
    Abstract: A data sparse projection method, includes: randomly initializing a high-dimensional sparse two-dimensional matrix (S1); fixing the high-dimensional sparse two-dimensional matrix, and calculating an optimal output variable by using the high-dimensional sparse two-dimensional matrix (S2); fixing the optimal output variable, and calculating an optimal high-dimensional sparse two-dimensional matrix by using the optimal output variable (S3); and cyclically fixing the high-dimensional sparse two-dimensional matrix and the output variable until the optimal output variable is no longer increased when the high-dimensional sparse two-dimensional matrix is fixed (S4).
    Type: Grant
    Filed: April 12, 2023
    Date of Patent: December 26, 2023
    Assignee: THE CHINESE UNIVERSITY OF HONG KONG, SHENZHEN
    Inventors: Chonglin Gu, Changyi Ma, Wenye Li, Shuguang Cui
  • Patent number: 11851675
    Abstract: The subject invention pertains to methods and devices for generating mature oocytes from immature oocytes and improving oocyte quality for improved success of assistant reproductive technology (ART). The methods include the use of tunneling nanotube-forming cells and oocytes, wherein the tunneling nanotube-forming cells transfer autologous genomic materials, biomolecules and cellular components to the oocytes. The devices of the invention include microfluidic device to improve the efficiency of the transfer of biomolecules and cellular components between tunneling nanotube-forming cells and oocytes.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: December 26, 2023
    Assignee: The Chinese University of Hong Kong
    Inventors: Tin Lap Lee, Tin Chiu Li, Yiu Leung Chan, Wing Tung Lee, Kin Wing Judy Ng, Ting Hei Thomas Chan
  • Patent number: 11851401
    Abstract: The present disclosure provides a method of preparing unsaturated hydrocarbons by black body photocatalytic (thermal radiative catalytic) conversion of saturated hydrocarbons. In this method, a saturated hydrocarbon reaction gas is introduced into a reaction furnace, and the saturated hydrocarbon is catalyzed to convert under heating and illumination conditions to prepare the unsaturated hydrocarbons. The photocatalysis is combined to the conventional thermal catalysis to improve the catalytic performance, accelerate the reaction speed, increase the conversion rate, and/or improve the selectivity of the catalytic reaction.
    Type: Grant
    Filed: October 12, 2022
    Date of Patent: December 26, 2023
    Assignees: THE CHINESE UNIVERSITY OF HONG KONG, SHENZHEN, UNIVERSITY OF TORONTO
    Inventors: Lu Wang, Geoffrey Alan Ozin, Zeshu Zhang, Xue Ding, Zhigang Zou
  • Patent number: 11848499
    Abstract: An on-chip antenna comprising an electrically insulating substrate having first and second faces; a metal layer arranged on the second face; and, a dipole antenna structure arranged on the first face, the dipole antenna structure comprising a dipole antenna and a feed structure connected to the dipole antenna; the on-chip antenna being configured such that when the feed structure is fed with an electrical signal it operates simultaneously in (i) at least one dielectric resonator mode to function as a dielectric resonance antenna, and (ii) at least one dipole mode to function as a cavity backed dipole antenna.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: December 19, 2023
    Assignee: CITY UNIVERSITY OF HONG KONG
    Inventors: Chi Hou Chan, Shang Cheng Kong, Kam Man Shum
  • Patent number: 11845821
    Abstract: The present disclosure provides a humidity-stiffening polymer material, and a preparation method therefor and a use thereof. The humidity-stiffening polymer material includes the following raw materials: a monomer, an ionic liquid, a salt, a cross-linking agent and an initiator, wherein the monomer includes benzyl methacrylate, the ionic liquid includes an imidazole-based ionic liquid, and the salt includes a hygroscopic salt. The method for preparing the humidity-stiffening polymer material includes: mixing the raw materials to obtain a precursor liquid, performing reaction on the mixture after degassing, and drying the mixture to obtain the humidity-stiffening polymer material. The humidity-stiffening polymer material is applied to actuators, soft robots and wearable biomedical devices based on bionic design.
    Type: Grant
    Filed: November 2, 2022
    Date of Patent: December 19, 2023
    Assignee: The Chinese University of Hong Kong, Shenzhen
    Inventors: Shiping Zhu, Xiaoqing Ming, Le Yao, Qi Zhang
  • Patent number: 11839428
    Abstract: Disclosed is a method for analyzing a distribution of retinal lesions in a mouse model, including: scanning a mouse posterior polar fundus based on optical coherence tomography (OCT), and acquiring lesion images of the mouse posterior polar fundus; acquiring lesion distribution coordinates based on the lesion images of the mouse posterior polar fundus; constructing a coordinate map of a lesion distribution rule based on the lesion distribution coordinates; and acquiring lesion distribution in quadrants based on the coordinate map of the lesion distribution rule, and calculating and counting a number of lesions in each quadrant.
    Type: Grant
    Filed: May 1, 2023
    Date of Patent: December 12, 2023
    Assignee: JOINT SHANTOU INTERNATIONAL EYE CENTER OF SHANTOU UNIVERSITY AND THE CHINESE UNIVERSITY OF HONG KONG
    Inventors: Haoyu Chen, Xiaoting Mai, Shaofen Huang, Meiqin Zhang
  • Patent number: 11839998
    Abstract: Three-dimensional (3D) hierarchical morphologies widely exist in natural and biomimetic materials, which impart preferential functions including liquid and mass transport, energy conversion, and signal transmission for various applications. While notable progress has been made in the design and manufacturing of various hierarchical materials, the state-of-the-art approaches suffer from limited materials selection, high costs, as well as low processing throughput. Herein, by harnessing the configurable elastic crack engineering-controlled formation and configuration of cracks in elastic materials, an effect normally avoided in various industrial processes, the present invention provides a facile and powerful technique to enable the faithful transfer of arbitrary hierarchical structures with broad material compatibility and structural and functional integrity.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: December 12, 2023
    Assignees: Hong Kong Baptist University, The Hong Kong University of Science and Technology, City University of Hong Kong
    Inventors: Kangning Ren, Hongkai Wu, Zuankai Wang, Shuhuai Yao, Beng Ong, Wanbo Li, Zeyu Li, Han Sun, Chiu Wing Chan
  • Patent number: 11842794
    Abstract: Systems and methods for variant calling in single molecule sequencing from a genomic dataset using a convolutional deep neural network. The method includes: transforming properties of each of the variants into a multi-dimensional tensor; passing the multi-dimensional tensors through a trained convolutional deep neural network to predict categorical output variables, the convolutional deep neural network minimizing a cost function iterated over each variant, the convolutional deep neural network trained using a training genomic dataset including previously identified variants, the convolutional neural network including: a plurality of pooled convolutional layers and at least two fully-connected layers connected sequentially after the last of the pooled convolutional layers, the at least two fully-connected layers comprising a second fully-connected layer connected sequentially after a first fully-connected layer; and outputting the predicted categorical output variables.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: December 12, 2023
    Assignee: THE UNIVERSITY OF HONG KONG
    Inventors: Ruibang Luo, Tak-Wah Lam, Chi-Man Liu
  • Patent number: 11832941
    Abstract: Disclosed is a method for fabricating a wearable hydrogel glucose sensor, belonging to the technical field of biomedical sensing, including using polyacrylamide hydrogel as a basic material, preparing a hydrogel film by adding with phenylboronic acid group capable of recognizing glucose molecules, and carrying out grating writing on the hydrogel film in a femtosecond laser direct writing mode to obtain the wearable hydrogel glucose sensor. The hydrogel film combines with glucose and expands linearly, which makes the grating period and effective refractive index change. The quantitative measurement of glucose is realized by detecting the spatial position of diffraction band and the change of diffraction power intensity.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: December 5, 2023
    Assignee: JOINT SHANTOU INTERNATIONAL EYE CENTER OF SHANTOU UNIVERSITY AND THE CHINESE UNIVERSITY OF HONG KONG
    Inventors: Mingzhi Zhang, Hang Qu, Xuehao Hu, Xin Wen, Qingping Liu
  • Patent number: 11835259
    Abstract: The present invention provides an integrated system of moisture removal, air purification, and air ventilation of the process air while some of the energy and resources required for operation of the system are self-sustained, or in some aspects the present system is self-regenerated such as heating and cooling of air and water exchanged among various elements/modules/members within the system or between the system and the surroundings, such that it becomes an all-time and all-round air dehumidifier, purifier and ventilator. Related method for removing air moisture from the surroundings using the present system is also provided.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: December 5, 2023
    Assignee: City University of Hong Kong
    Inventors: Chi Yan Tso, Hau Him Lee, Siru Chen, Tsz Chung Ho
  • Publication number: 20230385365
    Abstract: Received is a main program representing one Engineering Design Optimization Problem (EDOP), the EDOP including polynomial terms with product values. A number (N) of available parallel processors for parallel processing are identified. The main program is partitioned into N subprograms, N being a positive integer greater than one. The N subprograms have fewer overlapping product values between them compared to existing solutions, and the partitioning is prime-number based. Each of the available parallel processors then independently solve a unique subprogram of the N subprograms, resulting in N unique solutions. A best solution is automatically chosen from among the N unique solutions and the best solution is automatically applied to the EDOP.
    Type: Application
    Filed: May 25, 2022
    Publication date: November 30, 2023
    Applicant: City University of Hong Kong
    Inventors: Han-Lin LI, Way KUO, Frank Youhua CHEN, Mingming WANG
  • Patent number: 11826955
    Abstract: A method of making a magnetically-drivable microrobot that is suitable for carrying and delivering cells includes photo-curing a photo-curable material composition to form a body of the magnetically-drivable microrobot. The photo-curable material composition includes a degradable component, a structural component, a magnetic component, and a photo-curing facilitation composition including a photoinitiator component and a photosensitizer component.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: November 28, 2023
    Assignee: City University of Hong Kong
    Inventors: Dong Sun, Tanyong Wei, Lidai Wang, Dongfang Li, Yachao Zhang, Shuxun Chen
  • Patent number: 11820668
    Abstract: Methods for preparation of surfactant-free ultra-small spinel ternary metal oxide nanoparticles are provided. A method comprises dissolving first and second metal salts in deionized water in a specific mole ratio to form a solution comprising two different metal ions, applying a coprecipitation method and adding an alkaline solution to the solution to form a colloidal suspension, wherein a colloid of the colloidal suspension is a metal hydroxide, adjusting the amount and the addition rate of the alkaline solution to form a specific structure of metal hydroxide precipitate; washing and drying the metal hydroxide to form a structured metal hydroxide powder, and applying a calcination method to the structured metal hydroxide powder to form a surfactant-free spinel-type (AB2O4) ternary metal oxide, wherein A and B each respectively comprise a metal element.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: November 21, 2023
    Assignee: THE UNIVERSITY OF HONG KONG
    Inventors: Chik Ho Wallace Choy, Zhanfeng Huang, Yangdan Ou
  • Patent number: 11820878
    Abstract: Ultra-stable aqueous foam comprises hydrophobic silica particles residing within bubbles in an aqueous solution of a hydrophilic polymer, a protein, or aqueous dispersible colloidal particles. The combination of the hydrophobic and hydrophilic components stabilizes the foam interfaces to result in long term stability of the foam. The foams can be crosslinked to stable monolithic foams and used for structural foams, coatings, and thermal insulating for construction.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: November 21, 2023
    Assignee: The Chinese University of Hong Kong
    Inventors: To Ngai, Yifeng Sheng, Kuan Ting Lin
  • Patent number: 11822732
    Abstract: An interactive wearable device includes a ring body and a detector. The ring body includes a top insulating layer, a bottom insulating layer, and an intermediate insulating layer disposed in between the top and the bottom insulating layers. The detector includes a receiving electrode layer disposed in between the top and the intermediate insulating layers, a transmitting electrode layer disposed in between the intermediate and the bottom insulating layers, and a ground electrode layer embedding in the bottom insulating layer and electrically coupled to an electrical ground. The receiving electrode layer has a plurality of receiving electrode portions separated from each other and arranged in a matrix and along a curve path. The interactive wearable device is configured to analyze the movement event at least according to a variation of a data set in response to the movement event, measured by receiving electrode portions.
    Type: Grant
    Filed: February 15, 2023
    Date of Patent: November 21, 2023
    Assignee: City University of Hong Kong
    Inventors: Kening Zhu, Taizhou Chen, Tianpei Li
  • Patent number: 11818955
    Abstract: The present disclosure provides a method for forming piezoelectric films on surfaces of arbitrary morphologies. The method includes providing a sol for forming the piezoelectric film; spraying the sol onto the surface thereby forming a liquid film containing the sol on the surface; wiping the liquid film with a flattening tool for flattening the liquid film; drying the flattened liquid film thereby forming a gel layer; and annealing the gel layer thereby forming the piezoelectric film. The piezoelectric films with high uniformity and desired thickness can be formed on curved and even wrinkled surfaces by the present method.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: November 14, 2023
    Assignee: City University of Hong Kong
    Inventors: Zhengbao Yang, Shiyuan Liu
  • Patent number: 11817630
    Abstract: The present invention provides wideband millimeter-wave SIW-fed FPC filtering antenna comprising a partially reflecting surface (PRS) and a filtering source configured to radiate a millimeter-wavelength electromagnetic wave. The filtering source comprises a conductive reflecting plane configured to work with the PRS to form a Fabry-Perot cavity; radiating elements including a pair of shorted radiating patches electrically connected to a ground plane through a pair of probes; and a substrate integrated waveguide (SIW) feeding structure coupled to the pair of radiating patches through a coupling aperture. The SIW-fed FPC filtering antenna has the advantages of wider bandwidth, higher directivity/gain, reduced structural complexity, compact size and appropriate feeding type for millimeter-wave applications.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: November 14, 2023
    Assignee: City University of Hong Kong
    Inventors: Haotao Hu, Chi Hou Chan
  • Patent number: 11817800
    Abstract: A wearable device that is capable of harvesting kinetic energy from wrist motions using piezoelectric and/or electromagnetic energy harvesters is disclosed. A first part of the device is worn on the user and second part of the device is movable against the second part to accentuate the frequency of movements.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: November 14, 2023
    Assignee: CITY UNIVERSITY OF HONG KONG
    Inventors: Zhengbao Yang, Biao Wang