Patents Assigned to University of Maryland
  • Patent number: 11963791
    Abstract: A method for training an algorithm for predicting a knee adduction moment (KAM) includes, while each subject walks over forceplates, capturing kinematic data, generating first ground reaction force (GRF) data, generating second GRF data, and generating reference KAM data based on the kinematic data and the first GRF data. While repeatedly training the algorithm by incrementing i by one, the method performs generating a model, which predicts reference KAM data, validating the predicted reference KAM data based on reference KAM data of the subjects other than the i-th subject, adjusting internal parameters by minimizing an error between the predicted KAM data and reference KAM data of the subjects other than the i-th subject, and producing an accuracy score for the model based on an error between the predicted reference KAM data and the reference KAM data of the i-th subject.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: April 23, 2024
    Assignee: University of Maryland, College Park
    Inventors: Yunjung Heo, Jumyung Um, Jae Kun Shim, Samantha Snyder, Ross Miller
  • Patent number: 11958209
    Abstract: A delignified wood material is formed by removing substantially all of the lignin from natural wood. The resulting delignified wood retains cellulose-based lumina of the natural wood, with nanofibers of the cellulose microfibrils being substantially aligned along a common direction. The unique microstructure and composition of the delignified wood can provide advantageous thermal insulation and mechanical properties, among other advantages described herein. The thermal and mechanical properties of the delignified wood material can be tailored by pressing or densifying the delignified wood, with increased densification yielding improved strength and thermal conductivity. The chemical composition of the delignified wood also offers unique optical properties that enable passive cooling under solar illumination.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: April 16, 2024
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Liangbing Hu, Tian Li, Jianwei Song, Chaoji Chen
  • Patent number: 11957718
    Abstract: The invention provides compositions comprising multipotent progenitor cells isolated from tonsillar tissue and differentiated cells derived therefrom and methods for using the cells for the treatment of diseases or disorders.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: April 16, 2024
    Assignee: University of Maryland, Baltimore
    Inventors: Michal Zalzman, Rodney Taylor
  • Publication number: 20240108724
    Abstract: The present disclosure relates to photo-immunoconjugate formulations comprising a nanoparticle carrier comprising first and second therapeutic agents coupled to the nanoparticle carrier, and a photosensitizer molecule coupled to the first therapeutic agent or the nanoparticle carrier, and methods of treating cancer via administration of the photo-immunoconjugate formulations.
    Type: Application
    Filed: June 29, 2023
    Publication date: April 4, 2024
    Applicant: University of Maryland, College Park
    Inventors: Huang-Chiao Huang, Barry Jiahao Liang
  • Patent number: 11949092
    Abstract: The present invention is directed to solid-state composite cathodes that comprise Na2S or Li2S, Na3PS4, or Li3PS4, and mesoporous carbon. The present invention is also directed to methods of making the solid-state composite cathodes and methods of using the solid-state composite cathodes in batteries and other electrochemical technologies.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: April 2, 2024
    Assignee: University of Maryland, College Park
    Inventors: Chunsheng Wang, Xiulin Fan, Jie Yue
  • Patent number: 11946885
    Abstract: A method of using the relaxation rate (R1 and/or R2) of solvent NMR signal to noninvasively assess whether viral capsids in a capsid preparation are full or empty, and the percentage of full capsids if the vial contains a mixture of full and empty capsids. The method can simply, rapidly, and non-invasively prove the safety and potency of the capsid preparation and thus whether the capsid preparation can be approved for clinical use, without requiring any sample preparation or reagent addition.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: April 2, 2024
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE
    Inventors: Yihua (Bruce) Yu, Marc Taraban
  • Patent number: 11944540
    Abstract: Described herein are devices and methods for mitral valve repair. The devices and methods implant a plurality of distal anchors at an annulus of the mitral valve (e.g., the posterior annulus) and tension artificial chordae to pull the portion of the annulus toward an opposite edge and inward into the ventricle. This can effectively reduce the size of the orifice and increase coaptation. The delivery devices can be configured to be actuated to form a distal anchor made of a pre-formed knot. The delivery devices deliver the pre-formed knot in an elongate configuration. Actuation of the delivery device causes the pre-formed knot to transition from the elongate configuration to the deployed configuration by approximating opposite ends of a suture coupled to a coiled configuration to form one or more loops. After formation of the knot, the delivery device can be withdrawn.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: April 2, 2024
    Assignees: University of Maryland, Baltimore, Harpoon Medical, Inc.
    Inventors: Michael Nicholas D'ambra, Felino V. Cortez, Jr., James S. Gammie, Peter Wilson, Stephen Epstein, Stephen Cournane, Julie Marie Etheridge, Peter Boyd
  • Patent number: 11939224
    Abstract: Provided are solid-state electrolyte structures. The solid-state electrolyte structures are ion-conducting materials. The solid-state electrolyte structures may be formed by 3-D printing using 3-D printable compositions. 3-D printable compositions may include ion-conducting materials and at least one dispersant, a binder, a plasticizer, or a solvent or any combination of one or more dispersant, binder, plasticizer, or solvent. The solid-state electrolyte structures can be used in electrochemical devices.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: March 26, 2024
    Assignee: University of Maryland, College Park
    Inventors: Eric D Wachsman, Dennis McOwen, Yunhui Gong, Yang Wen
  • Patent number: 11940399
    Abstract: Systems and methods of quantum sensing include obtaining information regarding a target signal in electronic spin states of quantum defects in an ensemble of quantum defects, mapping the information regarding the target signal from the electronic spin states of the quantum defects to corresponding nuclear spin states associated with the quantum defects, applying a light pulse to the ensemble of quantum defects to reset the electronic spin states of the quantum defects, and repeating a readout stage a plurality of times within a readout duration. The readout stage includes mapping the information regarding the target signal back from the nuclear spin states to the corresponding electronic spin states and applying a data acquisition readout pulse to optically measure the electronic spin states of the quantum defects.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: March 26, 2024
    Assignees: University of Maryland, College Park, The President and Fellows of Harvard College
    Inventors: Ronald Walsworth, Nithya Arunkumar, Connor Hart, Dominik Bucher, David Glenn
  • Patent number: 11940714
    Abstract: A quantum EIT-based optical switch includes a first waveguide, linear or nonlinear, a separate nonlinear waveguide evanescently coupled to the first waveguide, and a pump coupled to the nonlinear waveguide. A quantum STIRAP-based optical transduction device, which includes an auxiliary, intermediate spectral state for the quantum signal that aids efficient transduction of the quantum signal from the input spectral state to the output spectral state in a single device.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: March 26, 2024
    Assignees: University of Maryland, College Park, Government of the United States of America, as Represented by the Secretary of Commerce
    Inventors: Ivan A. Burenkov, Sergey V. Polyakov
  • Patent number: 11936080
    Abstract: Anode materials comprising various compositions of strontium iron cobalt molybdenum oxide (SFCM) for low- or intermediate-temperature solid oxide fuel cell (SOFCs) are provided. These materials offer high conductivity achievable at intermediate and low temperatures and can be used to prepare the anode layer of a SOFC. A method of making a low- or intermediate temperature SOFC having an anode layer including SFCM is also provided.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: March 19, 2024
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Ke-Ji Pan, Eric D. Wachsman, Mohammed Hussain Abdul Jabbar
  • Patent number: 11933747
    Abstract: The system for in-situ real-time measurements of microstructure properties of 3D-printing objects during 3-D printing processes. An intensive parallel X-ray beam (with an adjustable beam size) impinges on a printing object and is diffracted on a crystal lattice of the printing material. The diffracted radiation impinges on a reflector formed with an array of reflector crystals mounted on an arcuated substrate. The diffracted beams reflected from the reflector crystals correspond to the diffraction intensity peaks produced by interaction of the crystal lattice of the printing material with the impinging X-ray beam. The intensities of the diffraction peaks are observed by detectors which produce corresponding output signals, which are processed to provide critical information on the crystal phase composition, which is closely related to the defects and performance of the printing objects.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: March 19, 2024
    Assignees: University of Maryland, College Park, Advanced Analyzer Labs., Inc.
    Inventors: Peter Zavalij, Huapeng Huang, Lester W. Schultheis
  • Patent number: 11931600
    Abstract: Techniques are presented for optimizing a treatment plan for charged particle therapy. The method includes obtaining medical image data voxels inside a subject in a reference frame of a radiation source that emits a beam of charged particles at multiple tracks with a controlled emitted energy at each track. Hydrogen density (HD) is determined based on the medical image data. Stopping power ratio (SPR) along a first beam having a first track and first emitted energy is calculated based on HD. A range to a Bragg peak is calculated along the first beam based on the SPR and the first emitted energy. The first beam track or the first emitted energy, or both, is modified based at least in part on the beam range to determine a second track and second emitted energy. Output data that indicates the second track and second emitted energy are sent.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: March 19, 2024
    Assignee: University Of Maryland, Baltimore
    Inventors: Byong Yong Yi, Ulrich Langner, Sina Mossahebi, Chaitanya Kalavagunta
  • Patent number: 11921113
    Abstract: The present invention provides for excitable molecules positioned near metallic structures, wherein the metallic structures have a particles size from about 1 nm to 1000 nm and wherein the excitable molecules have fluorescence, phosphorescence or alpha-fluorescence emissions that are altered due to positioning near the metal structures. The emission spectra are distorted on either the blue or red edges in a range from 1 to 10 nm thereby changing the color of emissions. Further, the width of the emission spectrum is modified either by narrowing or broadening depending on the material of the metallic structures and type of excitable molecule.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: March 5, 2024
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE COUNTY
    Inventor: Chris D. Geddes
  • Patent number: 11922110
    Abstract: Systems and techniques for generating responsive documents are described. Digital content is organized into a structure that defines how content is presented when a document is displayed by a computing device. To generate the responsive document, relationships are defined among different digital content objects, such as groups of content objects to be presented together and content objects that are to be presented as alternatives of one another. Responsive patterns are assigned to grouped content objects, where each responsive pattern defines different layout configurations for displaying grouped content objects based on computing device display characteristics. In some implementations, multiple responsive patterns are assigned to a single content group and individual responsive patterns are associated with activation ranges for display characteristics that activate the responsive pattern.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: March 5, 2024
    Assignees: Adobe Inc., University of Maryland, College Park
    Inventors: Vlad Ion Morariu, Yuexi Chen, Christopher Alan Tensmeyer, Zhicheng Liu, Lars Niklas Emanuel Elmqvist
  • Patent number: 11921013
    Abstract: A one-dimensional (1D) and two-dimensional (2D) scan scheme for a tracking continuously scanning laser Doppler vibrometer (CSLDV) system to scan the whole surface of a rotating structure excited by a random force. A tracking CSLDV system tracks a rotating structure and sweep its laser spot on its surface. The measured response of the structure using the scan scheme of the tracking CSLDV system is considered as the response of the whole surface of the structure subject to random excitation. The measured response can be processed by operational modal analysis (OMA) methods (e.g., an improved lifting method, an improved demodulation method, an improved 2D demodulation method). Damped natural frequencies of the rotating structure are estimated from the fast Fourier transform of the measured response. Undamped full-field mode shapes are estimated by multiplying the measured response using sinusoids whose frequencies are estimated damped natural frequencies.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: March 5, 2024
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE COUNTY
    Inventors: Weidong Zhu, Linfeng Lyu
  • Publication number: 20240072591
    Abstract: An axial field rotary energy device can include a housing and a rotor rotatably coupled to the housing. The rotor can have an axis of rotation and magnets. A stator assembly can be coupled to the housing coaxial with and adjacent to the rotor. The stator assembly can include a printed circuit board (PCB) having electrically conductive coils and an internal air duct for cooling the stator assembly.
    Type: Application
    Filed: January 19, 2022
    Publication date: February 29, 2024
    Applicants: INFINITUM ELECTRIC, INC., UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Raphael Kahat Mandel, Paulo Guedes-Pinto, Amir Shooshtari, Randal A. Lee
  • Patent number: 11913015
    Abstract: The invention provides a composition comprising an extraembryonic endodermal (XEN) call and/or an embryonic fibroblast (EF) cell. The invention also provides a method of establishing a XEN cell line or a primary embryonic fibroblast (EF) cell line in vitro, the method comprising culturing a zygote or parthenote from a mammal for a time sufficient to produce one or more blastocysts; and culturing the one or more blastocysts on feeder cells in culture medium for a time sufficient to produce one or a plurality of XEN cells and/or one or a plurality of EF cells.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: February 27, 2024
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Chi-Hun Park, Bhanu Prakash V. L. Telugu
  • Patent number: 11912745
    Abstract: Proteins, nucleic acids encoding the proteins, compositions comprising the proteins, and methods are provided. The proteins have the ability to be self-targeted to ICAM-1 and, if desired, enzymatically-released at acidic pH. The ICAM-1-targeting peptides are provided as single copies or multiples repeats, and can be separated by linkers from the enzyme segment, from which the ICAM-1 targeting peptides can be released, if desired, at acidic pH. These fusion proteins enhance the activity of the enzyme segment within or liberated from the fusion protein, and provide increased recognition and targeting of diseased organs, transport from the bloodstream across the endothelium into said diseased organ, and intracellular uptake and lysosomal trafficking by cells in them, both in peripheral tissues and the central nervous system. Representative nucleotide and amino acid sequences of these fusion proteins, as well as in vitro, cellular, and in vivo animal data are provided.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: February 27, 2024
    Assignee: University of Maryland, College Park
    Inventors: Silvia Muro, Jing Chen, Melani Solomon, Kevin Gray
  • Patent number: 11911392
    Abstract: Compounds that inhibit p38? MAPK protein, and methods of using the same, are provided for treating or preventing diseases such as cancer or inflammatory diseases.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: February 27, 2024
    Assignees: UNIVERSITY OF MARYLAND, BALTIMORE, THE UNITED STATES OF AMERICA AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS
    Inventors: Paul S. Shapiro, Alexander D. Mackerell, Jr., Jeffrey D. Hasday