Patents Assigned to University of Science & Technology Beijing
  • Patent number: 11959158
    Abstract: A low-carbon and low alloy hot-work die steel with a high toughness at low temperatures and a high strength at high temperatures and a high hardenability, comprises the following components: C: 0.15-0.35%, Si: 0.40-0.90%, Mn: ?0.80%, Cr: 1.50-2.40%, Ni: 2.50-4.50%, Mo: 1.00-1.60%, V: 0.10-0.40%, W: 0.20-0.90%, P: ?0.02%, S?0.02%, and a balance of Fe matrix and other inevitable impurities. The above percentages are mass percentages. The material of the present invention can have a V notch impact energy of 30 J or more than 30 J at ?40° C., a high temperature strength of 380 MPa or more at 700° C., and a hardenability of 200 mm or more to ensure the consistency of internal and external microstructures. The materials of the present invention can be applied to hot-work molds used in special working conditions that require high toughness at low temperatures, high strength at high temperatures and high hardenability.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: April 16, 2024
    Assignee: University of Science & Technology Beijing
    Inventors: Jinfeng Huang, Jin Zhang, Chao Zhao, Cheng Zhang
  • Patent number: 11359265
    Abstract: A 1 GPa high-strength high-modulus aluminum-based light medium-entropy alloy and a preparation method thereof. An atomic expression of the designed medium-entropy alloy is AlxLiyMgzZnuCuv, subscripts representing the molar percentage of each corresponding alloy element, where x+y+z+u+v=100, x is 79.5-80.5, y is 1.5-2.5, z is 1.5-2.5, u is 13.5-14.5, and v is 1.5-2.5. The phase structure of the involved alloy is mainly based on a face-centered cubic (FCC) solid solution. The present invention obtains high performance aluminum alloy ingots through vacuum induction smelting and direct casting, and features low energy consumption, decreased cost, and simple operation in the preparation process, which cater to the high requirements on cost, strength and plasticity of light alloys applied in the high-end manufacturing industries such as aerospace and automobile electronics nowadays.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: June 14, 2022
    Assignee: University of Science & Technology Beijing
    Inventors: Yong Zhang, Ruixuan Li, Tao Zhang, Yangde Li
  • Patent number: 9912374
    Abstract: The present disclosure provides a full-duplex wireless communication method, an antenna device and a full-duplex wireless communication system. The method includes steps of: within a training period, acquiring a relevant parameter for cancelling a self-interference signal from an antenna itself as a first estimated value, and a relevant parameter for cancelling a cross-interference signal between the antenna and the other antenna as a second estimated value; and within a data transmission period, receiving and transmitting signals simultaneously by the antenna using an identical frequency, cancelling the self-interference signal from the antenna itself in accordance with the first estimated value, and cancelling the cross-interference signal between the antenna and the other antenna in accordance with the second estimated value.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: March 6, 2018
    Assignee: University of Science & Technology Beijing
    Inventor: Zhongshan Zhang
  • Publication number: 20170054472
    Abstract: The present disclosure provides a full-duplex wireless communication method, an antenna device and a full-duplex wireless communication system. The method includes steps of: within a training period, acquiring a relevant parameter for cancelling a self-interference signal from an antenna itself as a first estimated value, and a relevant parameter for cancelling a cross-interference signal between the antenna and the other antenna as a second estimated value; and within a data transmission period, receiving and transmitting signals simultaneously by the antenna using an identical frequency, cancelling the self-interference signal from the antenna itself in accordance with the first estimated value, and cancelling the cross-interference signal between the antenna and the other antenna in accordance with the second estimated value.
    Type: Application
    Filed: December 3, 2015
    Publication date: February 23, 2017
    Applicant: University of Science & Technology Beijing
    Inventor: Zhongshan Zhang