Patents Assigned to University of Warwick
  • Patent number: 7107852
    Abstract: A system to perform measurements on liquids, meat, viscous sugar or starch-based materials, and other foodstuffs using air-coupled ultrasound is provided. The technique uses ultrasonic transducers (advantageously capacitive transducers with polymer membranes), to generate ultrasonic signals in air, and to receive these signals after they have passed through the material under test. An ultrasonic pulse-compression process is then applied to increase the sensitivity of signals transmitted through the materials.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: September 19, 2006
    Assignee: University of Warwick
    Inventors: David Arthur Hutchins, Duncan Robert Billson, Tat Hean Gan, David Schindel
  • Publication number: 20060194033
    Abstract: A laminate material comprising two components, a first thermoplastic polymer substrate and a second thermoplastic polymer blown film; wherein the film and substrate are directly bonded one to another and where substantially one face or side of the substrate only is laminated with film; such that in use the resistance of the substrate to a localised impact on a non-laminated face is significantly reduced by the presence of the film layer.
    Type: Application
    Filed: April 8, 2004
    Publication date: August 31, 2006
    Applicant: University of Warwick
    Inventors: Kerry Kirwan, Gordon Smith
  • Patent number: 7095864
    Abstract: An electrostatic transducer, such as a loudspeaker or microphone, comprises a multi-layer panel (1) incorporating an electrically insulating middle layer (2) sandwiched between first and second electrically conducting outer layers (3, 4). At least one of the layers has a profiled surface (6) where it contacts the surface of another of the layers. Furthermore a signal generator is provided for applying an alternating electrical voltage across the first and second layers (3, 4) to initiate vibration due to variation of the electrostatic forces acting between the layers, thereby serving as a loudspeaker (or for detecting variation of such electrostatic forces due to received vibration in the case of a microphone).
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: August 22, 2006
    Assignee: University of Warwick
    Inventors: Duncan Robert Billson, David Arthur Hutchins
  • Patent number: 7075065
    Abstract: Mass spectrometry apparatus 105 comprises a serial arrangement of an ion source 110, first time of flight means, a field free region 120, means to fragment the molecules, a second time of flight means and a large area detector 160. The second time of flight means includes an ion mirror 150, the ion mirror 150 being arranged to produce a reflecting substantially quadratic field. The first time of flight means is arranged to provide spatial focusing concomitant with time focusing of ions at or near the entrance to the ion mirror 150. The means provided to fragment the ions front the first time of flight means can be a collision cell 140 or in the field free region 220 or in the first time of flight means. The means to fragment the molecules has a potential which is different from the potential at the entrance to the ion mirror 150, and the detecting surface of the detector 160 is mounted in the time focal surface of the ion mirror 150.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: July 11, 2006
    Assignee: University of Warwick
    Inventors: Alexander William Colburn, Peter John Derrick, Anastassios Giannakopulos
  • Patent number: 7011705
    Abstract: A non-linear optical crystal of a compound having the general formula DxM1?xTOZO4, including isomorphs thereof, where: D is a dopant which comprises one or both of Rb and Cs; M is selected from one or both of K and Ag; T comprises one or more of Ti, Sn and Ge, optionally together with one or both of Nb and Ta; Z is selected from one or both of P and As, optionally together with one or both of Ge and Si; and 0<x?0.1.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: March 14, 2006
    Assignee: The University of Warwick
    Inventors: Pamela Anne Thomas, Keith Beveridge Hutton, Roger Charles Chavannes Ward
  • Publication number: 20050245055
    Abstract: A method of forming a lattice-tuning semiconductor substrate comprises the steps of defining parallel strips of a Si surface by the provision of spaced parallel oxide walls (2) on the surface, selectively growing a first SiGe layer on the strips such that first dislocations (3) extend preferentially across the first SiGe layer between the walls (2) to relieve the strain in the first SiGe layer in directions transverse to the walls (2), and growing a second SiGe layer on top of the first SiGe layer to overgrow the walls (2) such that second dislocations form preferentially within the second SiGe layer above the walls (2) to relieve the strain in the second SiGe layer in directions transverse to the first dislocations (3). The dislocations so produced serve to relax the material in two mutually transverse directions whilst being spatially separated so that the two sets of dislocations cannot interact with one another.
    Type: Application
    Filed: August 12, 2003
    Publication date: November 3, 2005
    Applicant: University of Warwick
    Inventors: Adam Capewell, Timothy Grasby, Evan Hubert Parker, Terence Whall
  • Publication number: 20050239255
    Abstract: In order to reduce dislocation pile-ups in a virtual substrate, a buffer layer 32 is provided, between an underlying Si substrate 34 and an uppermost constant composition SiGe layer 36, which comprises alternating graded SiGe layers 38 and uniform SiGe layers 40. During the deposition of each of the graded SiGe layers 38 the Ge fraction x is linearly increased from a value corresponding to the Ge composition ratio of the preceding layer to a value corresponding to the Ge composition ratio of the following layer. Furthermore the Ge fraction x is maintained constant during deposition of each uniform SiGe layer 40, so that the Ge fraction x varies in step-wise fashion through the depth of the buffer layer. After the deposition of each pair of graded and uniform SiGe layers 38 and 40, the wafer is annealed at an elevated temperature greater than the temperature at which the layers have been deposited.
    Type: Application
    Filed: May 30, 2003
    Publication date: October 27, 2005
    Applicant: University of Warwick
    Inventors: Adam Capewell, Timothy Grasby, Evan Hubert Parker, Terence Whall
  • Patent number: 6949613
    Abstract: The application discloses supported initiators for transition metal mediated living free radical and/or atom transfer polymerisation comprising an initiator moiety attached to a support via a selectively cleavable link, and their use to produce polymers.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: September 27, 2005
    Assignee: University of Warwick
    Inventor: David Mark Haddleton
  • Publication number: 20050133945
    Abstract: A gas injection moulding method comprising injecting a melt into a mould and injecting gas into the melt to form a gas cavity in the melt wherein the melt is cooled by use of injection gas cooled to below the external ambient air temperature and/or by a continuous flow of injection gas through the mould.
    Type: Application
    Filed: February 10, 2005
    Publication date: June 23, 2005
    Applicant: University of Warwick
    Inventors: Rui Magalhaes, Gordon Smith
  • Patent number: 6894286
    Abstract: An ion focussing and conveying device 10 comprises a plurality of electrodes 12 in series. Means is provided to apply a first alternating voltage waveform to each electrode 12, the phase of the alternating voltage in the first waveform is applied to each electrode 12 in the series being ahead of the phase of the first alternating voltage waveform applied to the preceding electrode 12 in the series by less than 180°, preferably by 90° or less, such that ions are focussed onto an axis of travel and impelled along the series of electrodes 12.
    Type: Grant
    Filed: November 23, 2001
    Date of Patent: May 17, 2005
    Assignee: University of Warwick
    Inventors: Peter John Derrick, Alexander William Colburn, Anastassios Giannakopulos
  • Patent number: 6869562
    Abstract: A gas injection moulding method comprising injecting a melt into a mould and injecting gas into the melt to form a gas cavity in the melt, wherein the melt is cooled by use of injection gas cooled to below the external ambient air temperature and/or by a continuous flow of injection gas through the mould.
    Type: Grant
    Filed: July 17, 2000
    Date of Patent: March 22, 2005
    Assignee: University of Warwick
    Inventors: Rui Miguel de Azevedo Magalhaes, Gordon Frederick Smith
  • Patent number: 6867561
    Abstract: An electrical machine comprises a rotor without windings, a stator having an armature winding 24, 25 and a field winding 10 for generating a magnetomotive force in a direction extending transversely of the magnetomotive force generated by the armature winding. An electronic circuit 40 is provided for controlling the current in the armature winding 24, 25 such that periods in which a magnetomotive force in one direction is associated with a first current pulse alternate with periods in which a magnetomotive force in the opposite direction is associated with a second current pulse. A position sensor is provided for monitoring the rotational position of the rotor and for supplying output signals at a rate dependent on the speed of rotation of the rotor. Furthermore a control system supplies control signals to the circuit 40 to control the current in the armature winding 24, 25 in response to the output signals.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: March 15, 2005
    Assignees: Black & Decker, Inc., University of Warwick
    Inventors: Charles Pollock, Helen Geraldine Phyllis Pollock, Richard Thomas Walter
  • Patent number: 6850029
    Abstract: An electrical machine comprises a rotor without windings, a stator having an armature winding 24, 25 and a field winding 10 for generating a magnetomotive force in a direction extending transversely of the magnetomotive force generated by the armature winding. An electronic circuit 40 is provided for controlling the current in the armature winding 24, 25 such that periods in which a magnetomotive force in one direction is associated with a first current pulse alternate with periods in which a magnetomotive force in the opposite direction is associated with a second current pulse. A position sensor is provided for monitoring the rotational position of the rotor and for supplying output signals dependent on the speed of rotation of the rotor. Furthermore a control system 32 supplies control signals to the circuit 40 to control the current in the armature winding 24, 25.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: February 1, 2005
    Assignees: Black & Decker, Inc., University of Warwick
    Inventors: Charles Pollock, Helen Geraldine Phyllis Pollock
  • Patent number: 6788020
    Abstract: An electrical machine comprises a rotor without windings, a stator having an armature winding (24,25) and a field winding (10) for generating a magnetomotive force in a direction extending transversely of the magnetomotive force generated by the armature winding. An electric circuit (40) is provided for controlling the current in the armature winding (24, 25) such that periods in which a magnetomotive force in one direction is associated with a first current pulse alternate with periods in which a magnetomotive force in the opposite direction is associated with a second current pulse. A position sensor is provided for monitoring the rotational position of the rotor and for supplying output signals dependent on the speed of rotation of the moor.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: September 7, 2004
    Assignees: Black & Decker, Inc., University of Warwick
    Inventors: Charles Pollock, Helen Geraldine Phyllis Pollock
  • Patent number: 6787958
    Abstract: An electrical motor or generator comprises a rotor 79 without windings, a stator 78 having armature windings comprising at least two coils A1, A2 having active portions positioned within armature winding slots 81 in a stator iron, and field windings F having active portions positioned within field winding slots 80 in the stator iron. An electronic control circuit is provided for controlling the currents in the coils A1, A2 in synchronism with rotation of the rotor such that periods in which a magnetomotive force is generated in one direction by current flow in one of the coils alternate with periods in which a magnetomotive force is generated in the opposite direction by current flow in another of the coils. The armature winding slots and the field winding slots are equal in number and alternate with one another in the stator iron.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: September 7, 2004
    Assignees: Black & Decker Inc., University of Warwick
    Inventor: Richard Thomas Walter
  • Patent number: 6781122
    Abstract: Mass spectrometry apparatus 105 comprises a serial arrangement of an ion source 110, first time of flight means, a field free region 120, means to fragment the molecules, a second time of flight means and a large area detector 160 The second time of flight means includes an ion mirror 150, the ion mirror 150 being arranged to produce a reflecting substantially quadratic field. The first time of flight means is arranged to provide spatial focusing concomitant with time focusing of ions at or near the entrance to the ion mirror 150. The means provided to fragment the ions from the first time of flight means can be a collision cell 140 or in the field free region 220 or in the first time of flight means. The means to fragment the molecules has a potential which is different from the potential at the entrance to the ion mirror 150, and the detecting surface of the detector 160 is mounted in the time focal surface of the ion mirror 150.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: August 24, 2004
    Assignee: University of Warwick
    Inventors: Alexander William Colburn, Peter John Derrick, Anastassios Giannakopulos
  • Patent number: 6748284
    Abstract: A method of design and manufacture of an assembly of components including selecting KCs of the type, Product KCs, Assembly KCs or Manufacturing KCs is provided. The method includes the steps of identifying potential KCs and carrying out a risk assessment for variation of the potential KCs based upon four values, namely probability of failure or variation; the severity of the variation; the detectability of the variation, and the repairability of the variation. Scores attributed to each said value may then be multiplied together to produce the risk assessment. Once the KCs have been selected, a process of feature identification and classification for the KC may be carried out, followed by establishment of assembly precedence of features for the KC.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: June 8, 2004
    Assignees: BAE Systems plc, University of Warwick
    Inventors: David J F Vaughan, Stephen J Gibson, Ashley A Dillon
  • Patent number: 6664350
    Abstract: The invention relates to supported ligands and catalysts for use in the polymerization of olefinically unsaturated monomers such as vinylic monomers, comprising the use of a compound attached to support, the compound being capable of complexing with a transitional metal. Preferably the compound capable of complexing with a transition metal is a diimine such as a 1,4-diaza-1,3-butadiene, a 2-pyridinecarbaldehyde imine, an oxazolidone or a quinoline carbaldeyde. Preferably the catalysts are used in conjunction with an initiator comprising a homolytically cleavable bond with a halogen atom. The application also discloses processes for attaching ligands to supports, and processes for using the catalysts disclosed in the application.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: December 16, 2003
    Assignee: University of Warwick
    Inventors: David M. Haddleton, Arnaud Radigue, Dax Kukulj, David Duncalf
  • Patent number: 6646406
    Abstract: An electrical machine comprises a rotor without windings, a stator having an armature winding 24, 25 and a field winding 10 for generating a magnetomotive force in a direction extending transversely of the magnetomotive force generated by the armature winding. An electronic circuit 40 is provided for controlling the current in the armature winding 24, 25 such that periods in which a magnetomotive force in one direction is associated with a first current pulse alternate with periods in which a magnetomotive force in the opposite direction is associated with a second current pulse. A position sensor is provided for monitoring the rotational position of the rotor and for supplying output signals at a rate dependent on the speed of rotation of the rotor. Furthermore a control system supplies control signals to the circuit 40 to control the current in the armature winding 24, 25 in response to the output signals.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: November 11, 2003
    Assignees: Black & Decker Inc., University of Warwick
    Inventors: Charles Pollock, Helen Geraldine Phyllis Pollock, Richard Thomas Walter
  • Patent number: 6629432
    Abstract: The thermal regenerative compressive device 20 has a plurality of sorbent vessels 10 arranged circumferentially about a rotational axis X partly within a toroidal conduit 21. A heat carrier fluid flows from an inlet 22 of the conduit to the outlet 23 in counterflow with respect to the rotational movement of the sorbent vessels 10. Separate fluid channels 29, 30 encase the evaporation/condensation zones 15 of the vessels 10 to enable transfer of heat between the vessels 10 and the fluid flowing in channels 29 and 30. With the compressive device 20 heat is regenerated in a particularly simple and convenient manner. As a result the compressive device is capable of achieving greater efficiencies than existing adsorption devices.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: October 7, 2003
    Assignee: University of Warwick
    Inventor: Robert Edward Critoph