Patents Assigned to University of Windsor
  • Patent number: 12047013
    Abstract: A motor drive system for an electrified vehicle includes a DC source, such as a battery, and an inverter, which includes one or more phase drivers, each configured to switch current from the DC source to generate AC power upon one or more output terminals using a hybrid of two or more different solid-state switches, each having a corresponding voltage rating. A nine-switch inverter includes three phase drivers, each including high, low, and middle solid-state switches, with Si-MOSFET high and low switches having a first voltage rating of half of the rated voltage of the system, and with Gallium Nitride (GaN) transistors rated to block a full rated voltage of the system used for the middle switches. A delay driver synchronizes timing between two different solid-state switches by energizing control terminals at different rates. The inverter can be operated using near-state pulse-width modulation (NSPWM) to reduce switching losses.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: July 23, 2024
    Assignees: Magna International Inc., University of Windsor
    Inventors: Animesh Kundu, Aiswarya Balamurali, Himavarsha Dhulipati, Narayan Chandra Kar, Lakshmi Varaha Iyer, Gerd Schlager, Philip Korta, Wolfgang Baeck
  • Patent number: 11994496
    Abstract: An inspection probe and system for inspecting a welded or brazed joint includes a housing having an internal cavity and opposed tapered standoffs disposed at a distal end portion of the housing. Distal ends of the opposed tapered standoffs define pivot surfaces, and the opposed tapered standoffs are spaced apart to define a secondary enclosure. A plurality of transducer elements are disposed within the internal cavity of the housing and a primary coupling medium made of a flexible, semi-solid material is secured between the opposed tapered standoffs. A signal processing module is in communication with a data acquisition unit, which is in communication with the transducer elements. The inspection probe is rotated across the joint, data from the transducer elements is communicated to the signal processing module, and reconstructed and corrected images obtained at different angles from the transducer elements are stitched to generate an inspection image.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: May 28, 2024
    Assignees: Ford Global Technologies, LLC, University of Windsor
    Inventors: Bita Ghaffari, Elizabeth Therese Hetrick, Roman Maev, Andrew Ouellette
  • Publication number: 20220365037
    Abstract: An inspection probe and system for inspecting a welded or brazed joint includes a housing having an internal cavity and opposed tapered standoffs disposed at a distal end portion of the housing. Distal ends of the opposed tapered standoffs define pivot surfaces, and the opposed tapered standoffs are spaced apart to define a secondary enclosure. A plurality of transducer elements are disposed within the internal cavity of the housing and a primary coupling medium made of a flexible, semi-solid material is secured between the opposed tapered standoffs. A signal processing module is in communication with a data acquisition unit, which is in communication with the transducer elements. The inspection probe is rotated across the joint, data from the transducer elements is communicated to the signal processing module, and reconstructed and corrected images obtained at different angles from the transducer elements are stitched to generate an inspection image.
    Type: Application
    Filed: May 12, 2021
    Publication date: November 17, 2022
    Applicants: Ford Global Technologies, LLC, University of Windsor
    Inventors: Bita Ghaffari, Elizabeth Therese Hetrick, Roman Maev, Andrew Ouellette
  • Patent number: 11377558
    Abstract: In a preferred embodiment, there is provided a self-healing polymer composition preferably for use in manufacturing a dielectric layer of a capacitive pressure sensor, and which comprises a central atom and a polymer having a main chain and one or more terminal moieties coupled to the main chain, wherein said one or more terminal moieties are selected to operate as ligands to form a coordination complex with the central atom, and preferably, the ligands and the central atom are selected to form the coordination complex after being subject to an external force sufficient to remove coordinate covalent bonds therebetween.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: July 5, 2022
    Assignee: University of Windsor
    Inventors: Mohammed Jalal Ahamed, Simon Rondeau-Gagne, Julia Pignanelli
  • Patent number: 11013133
    Abstract: This invention relates to elastomeric coatings for electronics. Disclosed is a electronic device comprising a substrate layer, a conductive layer and an encapsulant layer. The encapsulant layer comprises at least a butyl rubber material. The butyl rubber encapsulant prevents a change in resistivity of the conductive layer following exposure to nitric acid vapour for 12 hours or hydrochloric acid vapour for 10 hours.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: May 18, 2021
    Assignees: ARLANXEO SINGAPORE PTE. LTD, The University of Windsor
    Inventors: Lorenzo Ferrari, Gregory J. E. Davidson, Tricia Breen Carmichael
  • Patent number: 10251379
    Abstract: In one aspect, the invention provides a transgenic non-human animal model having germ cells and somatic cells containing an endogenous MMTV-SV40-Spy1A gene sequence introduced into said animal model or an ancestor of said animal model at an embryonic stage, wherein said gene sequence comprises a mouse mammary tumor virus gene (MMTV), a functionally disrupted SV40 gene (SV40) and a human Spy1A gene. In another aspect, the present invention provides a transgenic non-human animal model whose germ cells and somatic cells contain an endogenous Spy1A-pTRE-Tight gene sequence introduced into said animal model or an ancestor of said animal model at an embryonic stage. Preferably, the Spy1A-pTRE-Tight animal model expresses the Spy1A gene and develop cancer, preferably breast cancer, when administered with tetracycline, preferably doxycycline.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: April 9, 2019
    Assignee: University of Windsor
    Inventors: Lisa Porter, Bre-Anne Fifield, Dorota Lubanska
  • Patent number: 9986968
    Abstract: The present invention providing a real-time positioning ultrasonic system that locates the dental implant drill bit relative to placed reference points or fiducial markers, and guides the drill entry point and angular trajectory, so that drilling is effected in the most optimum location in the jaw bone, as planned based on pre-surgery cone-beam computed tomography scans.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: June 5, 2018
    Assignee: University of Windsor
    Inventors: Bartosz Slak, Emil Strumban, Roman Maev
  • Patent number: 9969824
    Abstract: The present invention provides an optically transparent peroxide cured article made from a peroxide curable butyl rubber ionomer comprising repeating units derived from the reaction product of one or more multiolefin monomers and at least one nitrogen or phosphorous based nucleophile comprising a pendant vinyl group. A process is also disclosed for making the optically transparent article.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: May 15, 2018
    Assignees: LANXESS, Inc., The University of Windsor
    Inventors: Lorenzo Ferrari, Natalie Suhan, Conrad Siegers, Tricia Breen Carmichael
  • Patent number: 9745388
    Abstract: Surface modification methods based on a combination of plasma and chemical treatments render an unfilled butyl rubber surface highly reactive toward organosilanes, allowing formation of an organosilane self-assembled monolayer (SAM). Plasma oxidation of the butyl rubber surface followed by vapor deposition of SiCl4 produces a hydrophilic surface suitable for anchoring organosilanes. Fabrication of SAMs on this hydrophilic butyl rubber surface with n-octadecyltrichlorosilane (OTS) and trichloro(1H,1H,2H,2H-perfluorooctyl)silane (FOTS) via vapor deposition resulted in a 15% and 25% decrease in gas permeability, respectively, with no change in optical transparency of the butyl rubber.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: August 29, 2017
    Assignees: LANXESS, Inc., The University of Windsor
    Inventors: Tricia Breen Carmichael, Akhil Vohra, Lorenzo Ferrari, Natalie Suhan
  • Patent number: 9743906
    Abstract: An ultrasonic device evaluates the sound velocity of a nail to determine the overall health of a patient and to monitor cosmetological effects of certain products on the nail. The ultrasonic device includes a handhold probe having an piezoelectric transducer encased in cover that emits high-frequency ultrasonic impulses directed towards the nail. The nail reflects returning ultrasonic echoes back to the piezoelectric transducer. The returning ultrasonic echoes vibrate the piezoelectric transducer. A processor of a computer converts the vibrations into electrical pulses. The processor evaluates amplitude values of the electrical pulses to determine the parameters of the human nail, including the thickness, density and elasticity. The parameters are displayed on a display and analyzed by a technician to determine the nail condition. The health of the person or the effect of products on the nail can be determined based on the nail parameters.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: August 29, 2017
    Assignee: University of Windsor
    Inventors: Anna Maeva, Roman Gr. Maev, Liudmila A. Denisova
  • Patent number: 9522260
    Abstract: A stable delivery system for the therapeutic release and application of nitric oxide to a patient suffering from a cutaneous injury or wound includes a S-nitrosothiol and transition element nanoparticles. The transition metal nanoparticles are selected to react with the S-nitrosothiol to release and diffuse nitric oxide into the injury or wound.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: December 20, 2016
    Assignee: University of Windsor
    Inventors: Bulent Mutus, Arthur Jarosz, Adam Faccenda, Xueji Zhang
  • Publication number: 20150329649
    Abstract: Surface modification methods based on a combination of plasma and chemical treatments render an unfilled butyl rubber surface highly reactive toward organosilanes, allowing formation of an organosilane self-assembled monolayer (SAM). Plasma oxidation of the butyl rubber surface followed by vapour deposition of SiCl4 produces a hydrophilic surface suitable for anchoring organosilanes. Fabrication of SAMs on this hydrophilic butyl rubber surface with n-octadecyltrichlorosilane (OTS) and trichloro(1H,1H,2H,2H-perfluorooctyl)silane (FOTS) via vapour deposition resulted in a 15% and 25% decrease in gas permeability, respectively, with no change in optical transparency of the butyl rubber.
    Type: Application
    Filed: December 16, 2013
    Publication date: November 19, 2015
    Applicants: LANXESS Butyl PTE. LTD, The University of Windsor
    Inventors: Tricia Breen CARMICHAEL, Akhil VOHRA, Lorenzo FERRARI, Natalie SUHAN
  • Patent number: 8989839
    Abstract: A scanning apparatus, is used to effect multiple images of a tumor in which a contrast agent has been localized as a detectable marker over a selected time to map the change in the imaged marker. The rate of change in the imaged marker and/or contrast intensity of the dyed tissues is used to assess tumor aggressiveness and as an early predictor of response to cancer therapy. In particular, following the marking of tumor or cancerous tissues by the initial localization of an imageable contrast agent, the rate of change in the volume and/or area of the imaged marker is used to provide an indication of tumor interstitial fluid pressure (TIFP).
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: March 24, 2015
    Assignees: University of Windsor, Henry Ford Hospital
    Inventors: Mordechay Schlesinger, Long Jian Liu, James R. Ewing, Stephen L. Brown
  • Patent number: 8977013
    Abstract: One embodiment includes a biometric sensor for generating a three-dimensional representation of a portion of a finger, the finger comprising a three-dimensional structure including a surface tissue layer and a subsurface tissue layer, the biometric sensor comprising: a platen; a first transducer; a drive system; a controller; and a software module. The platen is configured to receive the finger. The first transducer is arranged about the platen, configured to scan at least a portion of the finger by transmitting ultrasound waves toward the finger and receiving the ultrasound waves after the waves reflect off of the finger, and further configured to output signals based upon the received ultrasound waves. The drive system is configured to motivate the set of transducers accurately about a central axis substantially parallel to the length of the finger to be scanned. The controller is configured to control the motion of the drive system.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: March 10, 2015
    Assignee: The Institute for Diagnostic Imaging Research, University of Windsor
    Inventors: Roman Gr. Maev, Fedar M. Seviaryn
  • Patent number: 8900998
    Abstract: A plating bath for electroless deposition of gold and gold alloy layers on such silicon-based substrates, includes Na(AuCl4) and/or other gold (III) chloride salts as a gold ion source. The bath is formed as a binary bath solution formed from mixing first and second bath components. The first bath component includes gold salts in concentrations up to 40 g/L, boric acid, in amounts of up to 30 g/L, and a metal hydroxide in amounts up to 20 g/L. The second bath component includes an acid salt, in amounts up to 25 g/L, sodium thiosulfate in amounts up to 30 g/L, and suitable acid, such as boric acid in amounts up to 20 g/L.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: December 2, 2014
    Assignee: University of Windsor
    Inventors: Mordechay Schlesinger, Robert Andrew Petro
  • Patent number: 8540826
    Abstract: A process for surface treatment of aluminium foils includes steps of applying an etching solution to chemically etch at least one surface of the foil to form an etched surface, and forming an aluminium oxidized coating on the etched surface. The etching solution comprises an aqueous solution which includes hydrogen peroxide as an oxidant and sulfuric, orthophosphoric or nitric acid.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: September 24, 2013
    Assignee: University of Windsor
    Inventors: Srimanta Ray, Jerald A. D. Lalman
  • Patent number: 8507707
    Abstract: The present invention provides a novel and improved method of functionalizing a C—H bond of an arene compound comprising the step of reacting an organometallic compound having a group 14 element with the arene compound having at least one hydrogen bonded to a carbon in the presence of a catalyst.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: August 13, 2013
    Assignee: University of Windsor
    Inventors: Samuel A. Johnson, Meghan E. Doster, Jillian A. Hatnean
  • Patent number: 8361462
    Abstract: Single-domain anti-bodies that bind pro-apoptotic proteins Bax and caspase-3 are identified and isolated. These single-domain antibodies may be used to modulate the active of Bax and caspase-3, thereby modulating the symptoms and steps of oxidative stress and/or cell apoptosis, including Bax dimerization, mitochondrial permeabilization and the release of apoptotic proteins.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: January 29, 2013
    Assignees: National Research Council of Canada, University of Windsor
    Inventors: Siyaram Pandey, Jamshid Tanha, Deyzi Gueorguieva
  • Patent number: 8347775
    Abstract: An energy dissipation assembly is provided for mounting between a fixed support and moveable support. The assembly includes a sacrificial deformation tube, a hardened cutter/deflector assembly and, optionally, a connecting cable to maintain the cutter/deflector assembly in juxtaposed coaxial alignment with an end deformation tube. The cutter/deflector assembly has a generally flattened disc shaped profile and includes a central hub, a circular support ring and one or more cutting blades. The support ring is concentrically about the hub and has an inner diameter greater than the outer tube diameter. On the occurrence of a shock force, the cutter/deflector assembly moves axial to cut/deform the deformation tube to dissipate force energy.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: January 8, 2013
    Assignee: University of Windsor
    Inventors: William Jack Altenhof, Shun Yi Jin, Amitabha Majumber
  • Patent number: 7078130
    Abstract: This invention provides novel stable metallic mesoporous transition metal oxide molecular sieves and methods for their production. The sieves have high electrical conductivity and may be used as solid electrolyte devices, e.g., in fuel cells, as sorbents, e.g. for hydrogen storage, and as catalysts. The invention also provides room temperature activation of dinitrogen, using the sieves as a catalyst, which permits ammonia production at room temperature.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: July 18, 2006
    Assignee: University of Windsor
    Inventor: David M. Antonelli