Patents Assigned to University of Wyoming
  • Patent number: 8628970
    Abstract: Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes. Determined parameters and processabilities for a plurality of feedstocks can be used to generate a mathematical relationship between parameter and processability; this relationship can be used to estimate the processability for hydroprocessing for a feedstock of unknown processability.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: January 14, 2014
    Assignee: The University of Wyoming Research Corporation
    Inventors: John F. Schabron, Joseph F. Rovani, Jr.
  • Patent number: 8609080
    Abstract: Methods and compositions for controlled release of amine, alcohol and thiol drugs, e.g., narcotic analgesics, and tricyclic amine antidepressants, are provided. The drug is releasably covalently bonded to a polymer or other activity-blocking moiety. Release is by an unmasking reaction resulting in the formation of a chemical group that undergoes a second reaction releasing the drug. For example, the narcotic analgesic fentanyl covalently attached to an inert polymer by way of its nitrogen through formation of a quaternary vinylammonium salt is released by hydrolysis of an acetal exposing an alcohol that undergoes an intramolecular nucleophilic substitution reaction involving displacement of the fentanyl nitrogen. Process rate is controlled by controlling the rate of the intramolecular substitution reaction through varying the number of atoms in the chain connecting the alcohol group and the vinylic carbon and/or by the addition of substituents on that chain, and/or by the acetal hydrolysis rate.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: December 17, 2013
    Assignee: The University of Wyoming
    Inventor: Robert C. Corcoran
  • Publication number: 20130288297
    Abstract: Methods for the self-assembly of photosynthetic unicells into a multicellular shape are provided. DNA constructs as well as methods for integration of the DNA constructs into the genomes of photosynthetic unicells for the expression of cell wall proteins or cell adhesion molecules for the self-assembly of photosynthetic unicells into a multicellular shape are also disclosed.
    Type: Application
    Filed: February 21, 2013
    Publication date: October 31, 2013
    Applicant: UNIVERSITY OF WYOMING
    Inventors: Stephen K. Herbert, Levi G. Lowder
  • Patent number: 8570030
    Abstract: An apparatus and method for detecting wear of a surface of an object or part, and directing the measured amount of wear to an interface such that an operator may be apprised of this value are described. One end of the sacrificial wear sensor hereof is disposed such that it experiences the same wear as the surface of the part to be monitored. One embodiment of the present sensing element includes a permanent magnet fixedly sandwiched between two plates having high magnetic permeability material, wherein magnetic poles are oriented perpendicular to the plates. The plates extend beyond the magnet on the side thereof opposite the wear edge, forming thereby an air gap such that magnetic flux is concentrated in the plates with the magnetic circuit being completed through the air gap between the plate extensions. A magnetic flux monitoring device may be disposed in the air gap of the sensing element for measuring the magnetic flux density in the gap.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: October 29, 2013
    Assignee: University of Wyoming
    Inventor: Scott A. Morton
  • Patent number: 8569680
    Abstract: A multi-aperture passive light sensor and method for detecting motion and edges of an object are described. The sensor may include at least two focusing lenses mounted on a spherical surface for focusing light from the object into the ends of optical fibers, the optical axis for each lens diverging at an angle from that of adjacent lenses depending on the intended application. Each lens is located closer to the end of its associated optical fiber, which is disposed coaxially to the optical axis of the lens, than the natural focal plane of the lens, thereby blurring the light received from the object. Light exiting the fibers is detected by photosensors located at the opposite end of each optical fiber, and voltage differences between the voltages generated in response to the light intensity impinging on the photosensors are used to detect motion and edges of the object.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: October 29, 2013
    Assignee: University of Wyoming
    Inventors: Geoffrey P. Luke, Cameron H. G. Wright, Steven F. Barrett
  • Patent number: 8567331
    Abstract: A method for rudder roll stabilization having two-feedback-path nonlinear dynamic compensation (NDC) is described. The high-order, Nyquist-stable control system having NDC hereof is absolutely stable and will provide a 20%-40% improvement in performance over existing roll reduction designs when lower performance steering mechanisms are employed, and is superior to linear controllers. That is, the present invention will be effective rudder roll stabilization in commercial vessels having slower rudders as well as in vessels having steering machines representing the best performance currently available, such as military systems. Since no ship hardware modifications are required, the present roll control technology will be able to be economically implemented.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: October 29, 2013
    Assignee: University of Wyoming
    Inventor: John F. O'Brien
  • Patent number: 8546105
    Abstract: Methods for manipulating carbohydrate processing pathways in cells of interest are provided. Methods are directed at manipulating multiple pathways involved with the sialylation reaction by using recombinant DNA technology and substrate feeding approaches to enable the production of sialylated glycoproteins in cells of interest. These carbohydrate engineering efforts encompass the implementation of new carbohydrate bioassays, the examination of a selection of insect cell lines and the use of bioinformatics to identify gene sequences for critical processing enzymes. The compositions comprise cells of interest producing sialylated glycoproteins. The methods and compositions are useful for heterologous expression of glycoproteins.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: October 1, 2013
    Assignees: The University of Wyoming, The John Hopkins University, Human Genome Sciences, Inc.
    Inventors: Donald Jarvis, Michael J. Betenbaugh, Shawn Lawrence, Yuan C. Lee, Timothy A. Coleman
  • Patent number: 8530240
    Abstract: Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: September 10, 2013
    Assignee: The University of Wyoming Research Corporation
    Inventors: John F. Schabron, Joseph F. Rovani, Jr.
  • Patent number: 8525114
    Abstract: The present invention may include methods and apparatus for the detection of explosives using near infrared or infrared spectroscopy to detect nitro or even carbonyl groups. Embodiments may include, at least one radiation emitter may emit at least one wavelength towards a target. At least one reflected wavelength may be generated after the wavelength collides with the target. A reflected wavelength may then be detected by at least one detector and analyzed with an analyzer.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: September 3, 2013
    Assignee: University of Wyoming Research Corporation
    Inventor: John F. Schabron
  • Publication number: 20130225401
    Abstract: Polymerizable ionic liquid monomers and their corresponding polymers (poly(ionic liquid)s) are created and found to exhibit high CO2 sorption. The poly(ionic liquid)s have enhanced and reproducible CO2 sorption capacities and sorption/desorption rates relative to room-temperature ionic liquids. Furthermore, these materials exhibit selectivity relative to other gases such as nitrogen, methane, and oxygen. They are useful as efficient separation agents, such sorbents and membranes. Novel free-radical and condensation polymerization approaches are used in the preparation of the poly(ionic liquids).
    Type: Application
    Filed: September 21, 2012
    Publication date: August 29, 2013
    Applicant: THE UNIVERSITY OF WYOMING
    Inventors: Youqing Shen, Maciej Radosz
  • Patent number: 8506918
    Abstract: The invention relates to an apparatus and method for reducing contaminants from industrial processes. More particularly, the invention is directed to a method of sequestering pollutants from flue gases in operational plants. The method includes sequestering contaminants from a point source by reacting an alkaline material with a flue gas containing contaminants to be sequestered, wherein the reaction has a rapid mass transfer rate to sequester at least a portion of the contaminants.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: August 13, 2013
    Assignee: University of Wyoming
    Inventors: Katta J. Reddy, Morris D. Argyle
  • Patent number: 8507208
    Abstract: Provided herein are microfluidic devices and methods useful for sensitive detection of analytes. The methods and devices described herein are also useful for detecting direct or indirect binding of enzymes or catalysts to a surface, for example a surface having analytes bound thereon. Methods disclosed herein include embodiments utilizing a pre-concentration scheme to improve signal levels of corresponding reporter moieties.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: August 13, 2013
    Assignee: University of Wyoming
    Inventors: Robert C. Corcoran, Debashis Dutta
  • Publication number: 20130200009
    Abstract: The present invention is a new, easy method for preparing stable solid Fe6+—Fe3+ agents in a fixed bed reactor by using O3 and FeOOH along with KOH with conversion efficiencies of approximately 27%.
    Type: Application
    Filed: June 29, 2012
    Publication date: August 8, 2013
    Applicant: THE UNIVERSITY OF WYOMING
    Inventor: Maohong Fan
  • Publication number: 20130189739
    Abstract: Methods and systems to achieve clean fuel processing systems in which carbon dioxide emissions (1) from sources (2) may be processed in at least one processing reactor (4) containing a plurality of chemoautotrophic bacteria (5) which can convert the carbon dioxide emissions into biomass (6) which may then be used for various products (21) such as biofuels, fertilizer, feedstock, or the like. Sulfate reducing bacteria (13) may be used to supply sulfur containing compounds to the chemoautotrophic bacteria (5).
    Type: Application
    Filed: March 10, 2013
    Publication date: July 25, 2013
    Applicant: The University of Wyoming Research Corporation d/b/a Western Research Institute
    Inventor: The University of Wyoming Research Corporation d/b/a Western Research Institute
  • Publication number: 20130189750
    Abstract: Methods and systems to achieve clean fuel processing systems in which carbon dioxide emissions (1) from sources (2) may be processed in at least one processing reactor (4) containing a plurality of chemoautotrophic bacteria (5) which can convert the carbon dioxide emissions into biomass (6) which may then be used for various products (21) such as biofuels, fertilizer, feedstock, or the like. Sulfate reducing bacteria (13) may be used to supply sulfur containing compounds to the chemoautotrophic bacteria (5).
    Type: Application
    Filed: March 10, 2013
    Publication date: July 25, 2013
    Applicant: The University of Wyoming Research d/b/a Western Research Institute
    Inventor: The University of Wyoming Research d/b/a Western Research Institute
  • Patent number: 8492154
    Abstract: Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock fouling tendency for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: July 23, 2013
    Assignee: The University of Wyoming Research Corporation
    Inventors: John F. Schabron, Joseph F. Rovani, Jr.
  • Patent number: 8449652
    Abstract: Polymerizable ionic liquid monomers and their corresponding polymers (poly(ionic liquid)s) are created and found to exhibit high CO2 sorption. The poly(ionic liquid)s have enhanced and reproducible CO2 sorption capacities and sorption/desorption rates relative to room-temperature ionic liquids. Furthermore, these materials exhibit selectivity relative to other gases such as nitrogen, methane, and oxygen. They are useful as efficient separation agents, such sorbents and membranes. Novel radical and condensation polymerization approaches are used in the preparation of the poly(ionic liquids).
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: May 28, 2013
    Assignee: University of Wyoming
    Inventors: Maciej Radosz, Youqing Shen
  • Patent number: 8435731
    Abstract: Compositions and methods for the detection, diagnosis and treatment of BVDV are provided.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: May 7, 2013
    Assignees: Colorado State University Research Foundation, The University of Wyoming
    Inventors: Thomas R. Hansen, Natalia P. Smirnova, Kathleen J. Austin, Alberto van Olphen
  • Publication number: 20130104772
    Abstract: At least one embodiment of the inventive technology may involve the intentional changing of the stability of an emulsion from a first stability to a more desired, second stability upon the addition of a more aromatic asphaltene subfraction (perhaps even a most aromatic asphaltene subfraction), or a less aromatic asphaltene subfraction (perhaps even a least aromatic asphatene subfraction) to a emulsion hydrocarbon of an oil emulsion, thereby increasing emulsion stability or decreasing emulsion stability, respectively. Precipitation and redis solution or sorbent-based techniques may be used to isolate a selected asphaltene subfraction before its addition to an emulsion hydrocarbon when that hydrocarbon is part of an emulsion or an ingredient of a yet-to-be-formed emulsion.
    Type: Application
    Filed: December 20, 2012
    Publication date: May 2, 2013
    Applicant: The University of Wyoming Research Corporation d/b/a Western Research Institute
    Inventor: The University of Wyoming Research Corporation d/b/a Western Research Institute
  • Publication number: 20130092370
    Abstract: The use of coal fields as subsurface bioreactors for producing sustainable methane gas from terrestrial sources of biomass is described. Microbial presence is determined for a target coal formation, and tracers are injected to determine permeability, porosity, volume, and minimum and a maximum material injection rates. At least one injection well and at least one circulation well effective for generating an injection rate between the minimum and maximum injection rates are provided for injecting a solution of biodegradable materials into the coal seam. A chosen quantity of biodegradable materials is allowed to be digested, fermented and converted by microbial action within the coal seam. Methane gas is extracted through producing and injecting wells, although pumping will enhance gas recovery.
    Type: Application
    Filed: April 2, 2012
    Publication date: April 18, 2013
    Applicant: University of Wyoming
    Inventors: Michael A. Urynowicz, Song Jin