Patents Assigned to University of Yamanashi
-
Patent number: 8698380Abstract: Provided is a manufacturing method for preferentially-oriented oxide ceramics having a high degree of crystal orientation. The manufacturing method includes: obtaining slurry containing an oxide crystal B having magnetic anisotropy; applying a magnetic field to the oxide crystal B, and obtaining a compact of the oxide crystal B; and subjecting the compact to oxidation treatment to obtain preferentially-oriented oxide ceramics including a compact of an oxide crystal C having a crystal system that is different from a crystal system of one of a part and a whole of the oxide crystal B. By (1) reacting raw materials, (2) reducing the oxide crystal A, or (3) keeping the oxide crystal A at high temperature and quenching the oxide crystal A, the oxide crystal B is obtained to be used in the slurry.Type: GrantFiled: March 14, 2013Date of Patent: April 15, 2014Assignees: Canon Kabushiki Kaisha, University of YamanashiInventors: Takayuki Watanabe, Makoto Kubota, Jumpei Hayashi, Nobuhiro Kumada, Tomoaki Mochiduki
-
Patent number: 8663493Abstract: Provided is an oriented piezoelectric material with satisfactory sintering property free of Pb that is a hazardous substance, and a water-soluble alkaline ion, and a production method therefor. To this end, provided is a compound, including a tungsten bronze structure metal oxide, in which: the tungsten bronze structure metal oxide contains at least metal elements of Ba, Bi, Ca, and Nb, the metal elements satisfying the following conditions in terms of molar ratio; and has a C-axis orientation. The compound shows Ba/Nb=a: 0.363<a<0.399, Bi/Nb=b: 0.0110<b<0.0650, and Ca/Nb=c: 0.005<c<0.105. The tungsten bronze structure metal oxide preferably includes (1?x).Ca1.4Ba3.6Nb10O30?x.Ba4Bi0.67Nb10O30 (0.30?x?0.95).Type: GrantFiled: April 20, 2010Date of Patent: March 4, 2014Assignees: Canon Kabushiki Kaisha, University of YamanashiInventors: Takanori Matsuda, Takayuki Watanabe, Hiroshi Saito, Nobuhiro Kumada
-
Patent number: 8632723Abstract: Provided is a manufacturing method for preferentially-oriented oxide ceramics having a high degree of crystal orientation. The manufacturing method includes: obtaining slurry containing an oxide crystal B having magnetic anisotropy; applying a magnetic field to the oxide crystal B, and obtaining a compact of the oxide crystal B; and subjecting the compact to oxidation treatment to obtain preferentially-oriented oxide ceramics including a compact of an oxide crystal C having a crystal system that is different from a crystal system of one of a part and a whole of the oxide crystal B. By (1) reacting raw materials, (2) reducing the oxide crystal A, or (3) keeping the oxide crystal A at high temperature and quenching the oxide crystal A, the oxide crystal B is obtained to be used in the slurry.Type: GrantFiled: February 8, 2011Date of Patent: January 21, 2014Assignees: Canon Kabushiki Kaisha, University of YamanashiInventors: Takayuki Watanabe, Makoto Kubota, Jumpei Hayashi, Nobuhiro Kumada, Tomoaki Mochiduki
-
Patent number: 8559820Abstract: A complex orthogonal code in the present invention is one in which each row of a square matrix of N rows and N columns in which an element of an mth row and nth column is exp[2?j(m?1)(n?1)/N] (where j is an imaginary unit) is adopted as a code word. An optical orthogonal code for Optical Code Division Multiplexing/Optical Code Division Multiple Access (OCDM/OCDMA) is realized by a train of N-number of optical pulses corresponding to the argument (phase) of the code elements. An optical transmitter or optical receiver includes an optical correlator provided with a sampled Bragg grating having a plurality of Bragg gratings disposed serially at regular intervals inside an optical waveguide. The optical correlator is allocated any one of the code words. In the optical transmitter, an optical signal to be transmitted is encoded by the optical correlator. In the receiver, a received optical signal is decoded by the optical correlator.Type: GrantFiled: December 30, 2010Date of Patent: October 15, 2013Assignee: University of YamanashiInventor: Masanori Hanawa
-
Patent number: 8547001Abstract: To provide a piezoelectric ceramic containing BiFeO3 having a {110} plane orientation in a pseudo-cubic form, which is suited for the domain engineering, the piezoelectric ceramic includes a perovskite-type metal oxide represented by the following general formula (1), and has a {110} plane orientation in a pseudo-cubic form: xBiFeO3-(1?x)ABO3??General Formula (1) where A and B each represent one kind or more of metal ions; A represents a metal ion having a valence of 1, 2 or 3; and B represents a metal ion having a valence of 3, 4, or 5, provided that x is within a range of 0.3?x?1.Type: GrantFiled: March 30, 2010Date of Patent: October 1, 2013Assignees: Canon Kabushiki Kaisha, University of YamanashiInventors: Hiroshi Saito, Takanori Matsuda, Kenji Takashima, Nobuhiro Kumada
-
Patent number: 8529785Abstract: Provided is a piezoelectric material excellent in piezoelectricity. The piezoelectric material includes a perovskite-type complex oxide represented by the following General Formula (1). A(ZnxTi(1-x))yM(1-y)O3??(1) wherein A represents at least one kind of element containing at least a Bi element and selected from a trivalent metal element; M represents at least one kind of element of Fe, Al, Sc, Mn, Y, Ga, and Yb; x represents a numerical value satisfying 0.4?x?0.6; and y represents a numerical value satisfying 0.1?y?0.9.Type: GrantFiled: July 24, 2009Date of Patent: September 10, 2013Assignees: Canon Kabushiki Kaisha, Kyoto University, Tokyo Institute of Technology, Sophia University, University of Yamanashi, National Institute of Advanced Industrial Science and Technology, Tokyo University of Science Educational Foundation Administrative OrganizationInventors: Makoto Kubota, Kaoru Miura, Toshihiro Ifuku, Jumpei Hayashi, Masaki Azuma, Olga Alexandrovna Smirnova, Hiroshi Funakubo, Hiroshi Uchida, Nobuhiro Kumada, Satoshi Wada, Takashi Iijima, Soichiro Okamura
-
Patent number: 8524223Abstract: A microorganism inhibits the growth of various plant pathogens, and is not reduced in its efficacy even when the microorganism is used in combination with a chemical pesticide. The microorganism is Bacillus subtilis KS1 strain (NITE BP-569). The plant disease control agent comprises a culture of the microorganism as an active ingredient.Type: GrantFiled: July 3, 2009Date of Patent: September 3, 2013Assignee: University of YamanashiInventors: Tsutomu Takayanagi, Shunji Suzuki, Seiichi Furuya
-
Patent number: 8518292Abstract: Provided is a piezoelectric material having good piezoelectric properties and a Curie temperature (Tc) of 150° C. or higher, and a piezoelectric device using the piezoelectric material. The piezoelectric material includes a sintered body made of a perovskite-type metal oxide represented by the following general formula (1): xBi(Mg1/2Ti1/2)O3-(1-x)BaTiO3 (1), where x satisfies 0.17?x?0.8, in which an average grain size of grains contained in the sintered body is 0.5 ?m or larger to 10 ?m or smaller, and the sintered body is polycrystalline. In addition, the piezoelectric device includes a piezoelectric material and a pair of electrodes disposed in contact with the piezoelectric material, in which the piezoelectric material is the above-mentioned piezoelectric material.Type: GrantFiled: September 25, 2012Date of Patent: August 27, 2013Assignees: Canon Kabushiki Kaisha, University of Yamanashi, National Institute of Advanced Industrial Science & TechnologyInventors: Hiroshi Saito, Toshihiro Ifuku, Satoshi Wada, Nobuhiro Kumada, Keisuke Yamato, Takashi Iijima, Bong-Yeon Lee
-
Patent number: 8518290Abstract: Provided is a piezoelectric material which includes a compound free of lead and alkali metal and has a good piezoelectric property. The piezoelectric material where tungsten bronze structure oxides being free of lead and alkali metal and represented by AxB10O30 and A?x?B?10O30 are combined to form a morphotropic phase boundary has good piezoelectric property. The AxB10O30 is b(Ba5?5?Bi10?/3Nb10O30)+(1?b)(Ba4Ag2Nb10O30) (0?b?1 and 0<??0.4), and the A?x?B?10O30 is c(Sr5Nb10O30)+d(Ca5Nb10O30)+e(Ba5Nb10O30) (0?c?0.8, 0?d?0.4, 0.1?e?0.9, and c+d+e=1).Type: GrantFiled: July 24, 2009Date of Patent: August 27, 2013Assignees: Canon Kabushiki Kaisha, University of Yamanashi, Tokyo Institute of Technology, National Institute of Advanced Industrial Science and TechnologyInventors: Takayuki Watanabe, Takanori Matsuda, Hiroshi Saito, Hiroshi Funakubo, Nobuhiro Kumada, Takashi Iijima, Bong-Yeon Lee
-
Patent number: 8450682Abstract: The tip of an electrically conductive probe 11 is brought into contact with a sample and captures the sample S under atmospheric pressure, a high voltage for electrospray is applied to the probe 11 while a solvent is supplied to the tip of the probe 11 that has captured the sample, and molecules of the sample S at the probe tip are ionized. A miniscule amount of a fine solvent droplet is supplied to the probe tip and slow electrospray is implemented. As a result, the size of the electrically charged droplet can be made extremely small and components within the sample can be analyzed extensively without selectivity. Further, in imaging over an extended period of time, electrospray is possible even in the event that the sample dries.Type: GrantFiled: October 19, 2009Date of Patent: May 28, 2013Assignee: University of YamanashiInventor: Kenzo Hiraoka
-
Patent number: 8370627Abstract: It is an object of the present invention to solve a problem included in the onion routing which is used as a confidential communication method, that if a system down occurs in a computer within a communication route, connection is not made to further components at all, or a problem that the system and the traffic become slow by using multiplexed encryption. It is a communication method in which a client of an information providing source encrypts random numbers and calculates its hash value using respective public keys of an information server to which it connects, a function server of a destination to be sent, and an information server to which the function server connects, respective servers decrypt the encrypted random number using their own secret keys to compare the random number with the hash value, and thus, the client determines whether or not the route is related to the client.Type: GrantFiled: December 30, 2008Date of Patent: February 5, 2013Assignee: University of YamanashiInventors: Haruaki Yamazaki, Hidetoshi Mino, Yoshimichi Watanabe
-
Patent number: 8338054Abstract: There are provided: a proton transporting material that improves mechanical characteristics of a sulfonated liquid crystalline polymer material, can be kept as a membrane even though it is made a solid state while maintaining a molecular arrangement of a liquid crystalline state, and is suitable for electrolyte membranes of fuel cells etc.; an ion exchange membrane, a membrane electrolyte assembly (MEA), and a fuel cell that use the proton transporting material; a starting material for the proton transporting material. The proton transporting material has a molecular structure produced by crosslinking the sulfonated liquid crystalline polymer material with a crosslinking agent having two or more functional groups in sites except that of the sulfonic acid group.Type: GrantFiled: March 3, 2009Date of Patent: December 25, 2012Assignees: University of Yamanashi, Toppan Printing Co., Ltd.Inventors: Yuichiro Haramoto, Kohei Shiramizu, Masashi Oota
-
Patent number: 8303517Abstract: A first trocar as an medical apparatus includes an insertion hole having a projection opening for leading out a biopsy forceps into a body of a subject, a lid body for blocking the projection opening of the insertion hole, and a cooling sheet for cryogenically cooling a biopsy portion arranged in the vicinity of the lid body in a state where the biopsy forceps is stored in the insertion hole, and is capable of easily harvesting a living tissue while retaining morphological change of tissues in a living body under various hemodynamics.Type: GrantFiled: March 9, 2010Date of Patent: November 6, 2012Assignees: University of Yamanashi, Olympus Medical Systems Corp.Inventors: Shinichi Ohno, Koji Shimomura
-
Patent number: 8299688Abstract: Provided is a piezoelectric material having good piezoelectric properties and a Curie temperature (Tc) of 150° C. or higher, and a piezoelectric device using the piezoelectric material. The piezoelectric material includes a sintered body made of a perovskite-type metal oxide represented by the following general formula (1): xBi(Mg1/2Ti1/2)O3-(1-x)BaTiO3??(1), where x satisfies 0.17?x?0.8, in which an average grain size of grains contained in the sintered body is 0.5 ?m or larger to 10 ?m or smaller, and the sintered body is polycrystalline. In addition, the piezoelectric device includes a piezoelectric material and a pair of electrodes disposed in contact with the piezoelectric material, in which the piezoelectric material is the above-mentioned piezoelectric material.Type: GrantFiled: March 10, 2010Date of Patent: October 30, 2012Assignees: Canon Kabushiki Kaisha, University of Yamanashi, National Institute of Advanced Industrial Science and TechnologyInventors: Hiroshi Saito, Toshihiro Ifuku, Satoshi Wada, Nobuhiro Kumada, Keisuke Yamato, Takashi Iijima, Bong-Yeon Lee
-
Patent number: 8278119Abstract: By detecting an antibody which immunologically reacts with amylase ?2-A in a sample, AIP or FT1DM is examined or the possibility of developing FT1DM is determined. For instance, detection of this antibody is carried out by an immunological method using an antigen which immunologically reacts with this antibody. The antigen is preferably a partial fragment containing the amino acid sequence of amino acid numbers 299 to 511 of human amylase ?2-A (SEQ ID NO: 1).Type: GrantFiled: May 2, 2008Date of Patent: October 2, 2012Assignees: University of Yamanashi, Cosmic CorporationInventors: Tetsuro Kobayashi, Toyoshi Endo, Atsushi Sakuraoka
-
Patent number: 8253098Abstract: An ionization apparatus comprises a first electrode provided on the outer periphery of a dielectric cylindrical body and a second cylindrical electrode placed inside at a center of the cylindrical body. When an AC high voltage is impressed across the first electrode and the second cylindrical electrode, a barrier discharge occurs within the cylindrical body. A distal end portion of the second cylindrical electrode projects outwardly from the distal end of the cylindrical body, a thermal equilibrium plasma P having a low electron temperature is generated outwardly from the distal end of the cylindrical body without a plasma jet ascribable to the barrier discharge emerging outwardly from the distal end of the cylindrical body. By exposing a sample S to the thermal equilibrium plasma P, particles (atoms, molecules) desorbed from the sample S undergo soft ionization without being decomposed or polymerized.Type: GrantFiled: June 4, 2009Date of Patent: August 28, 2012Assignee: University of YamanashiInventors: Kenzo Hiraoka, Lee Chuin Chen
-
Patent number: 8178021Abstract: The invention resides in enabling biodegradable filament of polylactic acid, polyglycolic acid and the like to manufacture biodegradable micro-filament by simple and convenient means without needing special, high-accuracy and high-level apparatus; it is characterized in that highly molecular oriented micro-filament those of 12 ?m or less and generally from 2 ?m to 3 ?m can be obtained by heating biodegradable filament by infrared beam and the heated original filament is drawn to 100 times or more by tension of 10 MPa or less.Type: GrantFiled: February 22, 2005Date of Patent: May 15, 2012Assignees: University of Yamanashi, Gunze LimitedInventor: Akihiro Suzuki
-
Publication number: 20110297870Abstract: Provided is an oriented piezoelectric material with satisfactory sintering property free of Pb that is a hazardous substance, and a water-soluble alkaline ion, and a production method therefor. To this end, provided is a compound, including a tungsten bronze structure metal oxide, in which: the tungsten bronze structure metal oxide contains at least metal elements of Ba, Bi, Ca, and Nb, the metal elements satisfying the following conditions in terms of molar ratio; and has a C-axis orientation. The compound shows Ba/Nb=a: 0.363<a<0.399, Bi/Nb=b: 0.0110<b<0.0650, and Ca/Nb=c: 0.005<c<0.105. The tungsten bronze structure metal oxide preferably includes (1?x)·Ca1.4Ba3.6Nb10O30?x·Ba4Bi0.67Nb10O30 (0.30?x?0.95).Type: ApplicationFiled: April 20, 2010Publication date: December 8, 2011Applicants: University of Yamanashi, Canon Kabushiki KaishaInventors: Takanori Matsuda, Takayuki Watanabe, Hiroshi Saito, Nobuhiro Kumada
-
Patent number: 8057730Abstract: The objective of the present invention is to enable a microfilament that is a nanofilament to be manufactured continuously and consistently from all thermoplastic polymers without requiring a specialized high precision•high performance apparatus and also to present the nanofilament manufactured as described. The present invention comprises a microfilament in a nanofilament region and the manufacturing means thereof wherein a original filament transferred using a filament transfer means is supplied to an orifice under pressure P1 and is heated and drawn using an infrared light beam directly under the orifice under pressure P2 (P1>P2).Type: GrantFiled: January 9, 2008Date of Patent: November 15, 2011Assignee: University of YamanashiInventor: Akihiro Suzuki
-
Patent number: 8030090Abstract: A biological sample solution is ionized by electrospray and the sample solution is irradiated with an infrared laser beam to dissociate biological macromolecules into the constituents thereof. As a result, only non-covalent bonds of the biological macromolecules can be selectively severed and analyzed.Type: GrantFiled: May 17, 2005Date of Patent: October 4, 2011Assignee: University of YamanashiInventors: Kenzo Hiraoka, Satoko Akashi, Atsushi Takamizawa, Jan Arne Sunner