Patents Assigned to University of Zurich
  • Patent number: 9975947
    Abstract: Provided are anti-human ?-synuclein-specific binding molecules, e.g., antibodies or antiben-binding fragments, variants or derivatives thereof, as methods related thereto. Further provided are anti-human ?-synuclein binding molecules which bind to specific N-terminal and C-terminal epitopes on human ?-synuclein. The binding molecules described herein can be used in pharmaceutical and diagnostic compositions for ?-synuclein targeted immunotherapy and diagnosis, respectively.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: May 22, 2018
    Assignees: Biogen International Neuroscience GmbH, University of Zürich
    Inventors: Andreas Weihofen, Jan Grimm, Christoph Hock, Roger Nitsch, Lihe Su, Paul Weinreb
  • Publication number: 20180134773
    Abstract: Provided are novel specific binding molecules, particularly human antibodies as well as fragments, derivatives and variants thereof that recognize neoepitopes of disease-associated proteins which derive from native endogenous proteins but are prevalent in the body of a patient in a variant form and/or out of their normal physiological context. In addition, pharmaceutical compositions comprising such binding molecules, antibodies and mimics thereof and methods of screening for novel binding molecules, which may or may not be antibodies as well as targets in the treatment of neurological disorders such as Alzheimer's disease are described.
    Type: Application
    Filed: October 24, 2017
    Publication date: May 17, 2018
    Applicant: University of Zurich
    Inventors: Roger Nitsch, Christoph Hock, Christoph Esslinger, Marlen Knobloch, Kathrin Tissot, Jan Grimm
  • Patent number: 9896504
    Abstract: Provided are human alpha-synuclein-specific autoantibodies as well as fragments, derivatives and variants thereof as well as methods related thereto. Assays, kits, and solid supports related to antibodies specific for ?-synuclein are also disclosed. The antibody, immunoglobulin chain(s), as well as binding fragments, derivatives and variants thereof can be used in pharmaceutical and diagnostic compositions for ?-synuclein targeted immunotherapy and diagnosis, respectively.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: February 20, 2018
    Assignees: Biogen International Neuroscience GmbH, University of Zürich
    Inventors: Andreas Weihofen, Jan Grimm, Roger Nitsch, Christoph Hock
  • Publication number: 20180002409
    Abstract: Provided are novel human tau-specific antibodies as well as fragments, derivatives and variants thereof as well as methods related thereto. Assays, kits, and solid supports related to antibodies specific for tau are also disclosed. The antibody, immunoglobulin chain(s), as well as binding fragments, derivatives and variants thereof can be used in pharmaceutical and diagnostic compositions for tau targeted immunotherapy and diagnosis, respectively.
    Type: Application
    Filed: February 8, 2017
    Publication date: January 4, 2018
    Applicants: Biogen International Neuroscience GmbH, University of Zürich
    Inventors: Roger Nitsch, Feng Chen, Jan Grimm, Jean-Luc Baeriswyl, Christoph Hock
  • Publication number: 20170369592
    Abstract: Provided are novel human-derived antibodies specific for Fibroblast Activation Protein (FAP), preferably capable of selectively inhibiting the enzymatic activity of FAP, as well as methods related thereto. In addition, methods of diagnosing and/or monitoring diseases and treatments thereof which are associated with FAP are provided. Assays and kits related to antibodies specific for FAP are also disclosed. The novel anti-FAP antibodies can be used in pharmaceutical and diagnostic compositions for FAP-targeted immunotherapy and diagnostics.
    Type: Application
    Filed: January 11, 2016
    Publication date: December 28, 2017
    Applicants: Mabimmune Diagostics AG, Neurimmune Holding AG, University of Zurich
    Inventors: Chad BROKOPP, Jan GRIMM, Benoit COMBALUZIER, Mareike GOERANSON, Christine LOHMANN, Simon HOERSTRUP, Roger NITSCH
  • Patent number: 9828420
    Abstract: Provided are novel specific binding molecules, particularly human antibodies as well as fragments, derivatives and variants thereof that recognize neoepitopes of disease-associated proteins which derive from native endogenous proteins but are prevalent in the body of a patient in a variant form and/or out of their normal physiological context. In addition, pharmaceutical compositions comprising such binding molecules, antibodies and mimics thereof and methods of screening for novel binding molecules, which may or may not be antibodies as well as targets in the treatment of neurological disorders such as Alzheimer's disease are described.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: November 28, 2017
    Assignee: University of Zürich
    Inventors: Roger Nitsch, Christoph Hock, Christoph Esslinger, Marlen Knobloch, Kathrin Tissot, Jan Grimm
  • Patent number: 9828638
    Abstract: Described are methods and kits for identifying a subject at risk of, or having, a sensory neuropathy related disease, such as sensory neuropathies. In particular, the disclosure is based on the determination of mutations in the SPTLC2 gene causing sensory neuropathies.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: November 28, 2017
    Assignees: VIB VZW, Universiteit Antwerpen, University of Zurich, Medical University of Graz
    Inventors: Annelies Rotthier, Vincent Timmerman, Michaela Auer-Grumbach, Thorsten Hornemann
  • Publication number: 20170283491
    Abstract: Provided are novel specific binding molecules, particularly human antibodies as well as fragments, derivatives and variants thereof that recognize neoepitopes of disease-associated proteins which derive from native endogenous proteins but are prevalent in the body of a patient in a variant form and/or out of their normal physiological context. In addition, pharmaceutical compositions comprising such binding molecules, antibodies and mimics thereof and methods of screening for novel binding molecules, which may or may not be antibodies as well as targets in the treatment of neurological disorders such as Alzheimer's disease are described.
    Type: Application
    Filed: May 12, 2017
    Publication date: October 5, 2017
    Applicant: University of Zurich
    Inventors: Roger Nitsch, Christoph Hock, Christoph Esslinger, Marlen Knobloch, Kathrin Tissot, Jan Grimm
  • Patent number: 9771413
    Abstract: Provided are novel human-derived antibodies specifically recognizing polyomavirus polypeptides, preferably capable of binding to polyomaviruses of the type of JC virus (JCV) and/or BK virus (BKV) as well as methods related thereto. Furthermore, assays and kits related to antibodies specific for polyomaviruses, polyomavirus VP1 and or polyomavirus VP1 Virus-Like Particles (VLPs), preferably of the type of JCV and/or BKV, are disclosed. The human-derived antibodies as well as binding fragments, derivatives and variants thereof can be used in pharmaceutical and diagnostic compositions for polyomavirus targeted immunotherapy and diagnostics.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: September 26, 2017
    Assignees: Neurimmune Holding AG, University of Zurich
    Inventors: Jan Grimm, Roland Martin, Benoit Combaluzier, Ivan Jelcic
  • Patent number: 9746419
    Abstract: A dual modality imaging apparatus, comprising a magnetic resonance imaging (=MRI) system and a fluorescence molecular tomography (=FMT) system, for investigating a sample (42) located at a sample position (10), wherein the MRI system comprises a magnet (9) with a room temperature bore (8), with the sample position (10) located within the bore (8), and wherein the FMT system comprises means for directing a light beam (12, 17; 30) towards the sample position (10), and a position-sensitive detector (37) for collecting fluorescence light from the sample (42), is characterized in that the position-sensitive detector (37) is located within the bore (8), wherein at least part of the sample (42) is imaged onto the position-sensitive detector (37), and that the means for directing the light beam (12, 17; 30) comprise a focusing device for focusing the light beam (12, 17; 30) into a focal spot (41) on the sample (42), and a scanning device for scanning the focal spot (41) on the sample (42).
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: August 29, 2017
    Assignee: University of Zurich
    Inventors: Florian Stuker, Katerina Dikaiou, Christof Baltes, Markus Rudin
  • Patent number: 9744336
    Abstract: Device for gravity-driven, particularly continuous, control of the filling pressure in a balloon catheter (3), comprising: a balloon reservoir that is statically loaded with a vertically guided weight guide or stamp (9) that weighs vertically on the balloon reservoir, wherein said weight guide or stamp is designed to carry vertically arranged and therewith plumb-vertically acting weight elements (8), and wherein the balloon reservoir is guided in a cylindrical shell (6).
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: August 29, 2017
    Assignee: UNIVERSITY OF ZURICH
    Inventor: Andreas Christian Gerber
  • Publication number: 20170233463
    Abstract: Provided are anti-human ?-synuclein-specific binding molecules, e.g., antibodies or antiben-binding fragments, variants or derivatives thereof, as methods related thereto. Further provided are anti-human ?-synuclein binding molecules which bind to specific N-terminal and C-terminal epitopes on human ?-synuclein. The binding molecules described herein can be used in pharmaceutical and diagnostic compositions for ?-synuclein targeted immunotherapy and diagnosis, respectively.
    Type: Application
    Filed: January 19, 2017
    Publication date: August 17, 2017
    Applicants: Biogen International Neuroscience GmbH, University of Zürich
    Inventors: Andreas Weihofen, Jan Grimm, Christoph Hock, Roger Nitsch, Lihe Su, Paul Weinreb
  • Patent number: 9717928
    Abstract: A method of delivering a radioactive liquid includes, performing an initialization, including; extracting at least a first amount of a radioactive liquid from a source of radioactive liquid, measuring a radioactivity level for the first amount of radioactive liquid, and performing a calibration phase. The calibration phase includes, extracting a second amount of radioactive liquid from the source of radioactive liquid wherein the second amount is calculated based on the radioactivity level of the first amount to provide a total dose of radioactive liquid having a predetermined radioactivity level, and delivering the total dose and performing at least one more calibration and delivery phases.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: August 1, 2017
    Assignee: University of Zurich
    Inventors: Alfred Buck, Bruno Weber
  • Patent number: 9670272
    Abstract: Provided are novel specific binding molecules, particularly human antibodies as well as fragments, derivatives and variants thereof that recognize neoepitopes of disease-associated proteins which derive from native endogenous proteins but are prevalent in the body of a patient in a variant form and/or out of their normal physiological context. In addition, pharmaceutical compositions comprising such binding molecules, antibodies and mimics thereof and methods of screening for novel binding molecules, which may or may not be antibodies as well as targets in the treatment of neurological disorders such as Alzheimer's disease are described.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: June 6, 2017
    Assignee: UNIVERSITY OF ZURICH
    Inventors: Roger Nitsch, Christoph Hock, Christoph Esslinger, Marlen Knobloch, Kathrin Tissot, Jan Grimm
  • Publication number: 20170152308
    Abstract: Provided are novel TDP-43-specific binding molecules including polypeptides such as human antibodies, as well as fragments, derivatives and variants thereof. Also provided are methods related to these TDP-43 specific binding molecules. Assays, kits, and solid supports related to TDP-43-specific binding molecules, including polypeptides such as, human antibodies are also disclosed. The TDP-43-specific binding molecule, antibody, immunoglobulin chain(s), as well as binding fragments, derivatives and variants thereof can be used in pharmaceutical and diagnostic compositions for TDP-43 targeted immunotherapy and diagnosis, respectively.
    Type: Application
    Filed: November 4, 2016
    Publication date: June 1, 2017
    Applicants: Biogen International Neuroscience GmbH, University of Zurich
    Inventors: Roger Nitsch, Christoph Hock, Maria Grazia Barenco Montrasio, Fabio Montrasio, Jan Grimm, Jean-Luc Baeriswyl, Paul Weinreb, Janaky Coomaraswamy, Omar Quintero-Monzon
  • Patent number: 9642872
    Abstract: The invention relates to microRNA-34a and related microRNAs for use in the treatment of B-cell lymphoma. Likewise it relates to microRNA-34a for use in the preparation of a medicament for the treatment of B-cell lymphoma, and for a method of treatment of B-cell lymphoma comprising administering microRNA-34a. These claims are based on the observation that microRNA-34a shows strong anti-proliferative effects when overexpressed in diffuse large B-cell lymphoma (gDLBCL) cell lines, or when delivered intratumorally or systemically in xenograft models of DLBCL.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: May 9, 2017
    Assignee: UNIVERSITY OF ZURICH
    Inventors: Vanessa Craig, Anne Mueller
  • Patent number: 9642898
    Abstract: The invention relates to therapeutic compounds which are inhibitors of serine proteases, to pharmaceutical compositions thereof and to their use in the treatment of the human or animal body. More specifically, the present invention relates to a method for the treatment of neutropenia comprising the administration to a subject in need thereof of a therapeutically effective amount of a serine protease inhibitor. The invention also comprises prevention of apoptosis of myeloid cells (1) during and after transfection of bone marrow cells performed for gene therapy, (2) during blood stem cell mobilization performed for reconstitution of hematopoiesis and (3) during infusion of cells of the myeloid lineage for reconstitution of hematopoiesis for gene therapy or for treatment of neutropenia by infusion of neutrophils.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: May 9, 2017
    Assignees: MED DISCOVERY S.A., UNIVERSITY OF ZURICH
    Inventors: Adriano Fontana, Mike Recher, Christoph Kundig
  • Patent number: 9605059
    Abstract: Provided are novel human tau-specific antibodies as well as fragments, derivatives and variants thereof as well as methods related thereto. Assays, kits, and solid supports related to antibodies specific for tau are also disclosed. The antibody, immunoglobulin chain(s), as well as binding fragments, derivatives and variants thereof can be used in pharmaceutical and diagnostic compositions for tau targeted immunotherapy and diagnosis, respectively.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: March 28, 2017
    Assignees: Biogen International Neuroscience GmbH, University of Zürich
    Inventors: Roger Nitsch, Feng Chen, Jan Grimm, Jean-Luc Baeriswyl, Christoph Hock
  • Patent number: 9592259
    Abstract: The invention relates to transgene expression constructs—particularly self inactivating lentiviral vectors—comprising a dendritic cell specific promoter controlling the expression of autoantigen proteins, namely myelin basic protein, proteolipid protein and myelin oligodendrocyte glycoprotein, for use in the therapy of multiple sclerosis.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: March 14, 2017
    Assignee: University of Zurich
    Inventors: Christiane Dresch, Bruna de Andrade Pereira, Mathias Ackermann, Cornel Fraefel
  • Patent number: 9587014
    Abstract: Provided are novel TAR DNA-binding proteins of 43 kDa (“TDP-43”)-specific binding molecules including polypeptides such as human antibodies, as well as fragments, derivatives and variants thereof. Also provided are methods related to these TDP-43 specific binding molecules. Assays, kits, and solid supports related to TDP-43-specific binding molecules, including polypeptides such as, human antibodies are also disclosed. The TDP-43-specific binding molecule, antibody, immunoglobulin chain(s), as well as binding fragments, derivatives and variants thereof can be used in pharmaceutical and diagnostic compositions for TDP-43 targeted immunotherapy and diagnosis, respectively.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: March 7, 2017
    Assignees: Biogen International Neuroscience GmbH, University of Zürich
    Inventors: Roger Nitsch, Christoph Hock, Maria Grazia Barenco Montrasio, Fabio Montrasio, Jan Grimm, Jean-Luc Baeriswyl, Paul Weinreb, Janaky Coomaraswamy, Omar Quintero-Monzon