Abstract: A method of making capsules includes forming a mixture including a core liquid, a polyurethane precursor system, a first component of a two-component poly(urea-formaldehyde) precursor system, and a solvent. The method further includes emulsifying the mixture, adding a second component of the two-component poly(urea-formaldehyde) precursor system to the emulsified mixture, and maintaining the emulsified mixture at a temperature and for a time sufficient to form a plurality of capsules that encapsulate at least a portion of the core liquid. The capsules made by the method may include a polymerizer in the capsules, where the capsules have an inner capsule wall including a polyurethane, and an outer capsule wall including a poly(urea-formaldehyde). The capsules may include in the solid polymer matrix of a composite material.
Type:
Grant
Filed:
March 16, 2012
Date of Patent:
February 10, 2015
Assignee:
The Board of Trustees of the University of Illinois
Inventors:
Scott R. White, Jeffrey S. Moore, Nancy R. Sottos, Benjamin J. Blaiszik, Mary M. Caruso, Christian L. Mangun
Abstract: A transmitting and receiving electrode system, and power transmission method using the same are provided. The transmitting and receiving electrode system includes: a voltage/current detection unit measuring a voltage and a current in real time while power is being transmitted between first and second electrodes; a controller calculating a variable element value based on the voltage and current values transferred from the voltage/current detection unit; and a variable element unit converting a variable element under the control of the controller to adjust an impedance of a power source.
Type:
Grant
Filed:
April 24, 2012
Date of Patent:
February 10, 2015
Assignee:
Industry-Academic Cooperation Foundation, Chosun University
Inventors:
Youn-Tae Kim, Kun-Ho Park, Jang-Myoung Kim, Min-Joo Jeong, Chang-Hee Hyoung, Jung-Hwan Hwang, Sung-Weon Kang
Abstract: The present invention proposes an electronic memory device comprising a memory line including a memory domain. The memory line may contain a number of memory domains and a number of fixed domains, wherein each memory domain stores a single binary bit value. A multiferroic element may be disposed proximate to each memory domain allowing the magnetization of the memory domain to be changed using a spin torque current, and ensuring the stability of the magnetization of the domain when it is not being written. The domain boundary between the memory domain and one of its adjacent fixed domains may thereby be moved. An antiferromagnetic element may be disposed proximate to each fixed domain to ensure the stability of the magnetization of these. The value of each memory domain may be read by applying a voltage to a magnetic tunnel junction comprising the memory domain and measuring the current flowing through it.
Type:
Grant
Filed:
May 11, 2011
Date of Patent:
February 10, 2015
Assignee:
University of Virginia Patent Foundation
Inventors:
Stuart A. Wolf, Jiwei Lu, Mircea R. Stan
Abstract: Methods of treating patients with Factor VIII deficiency by administration of modified porcine factor VIII are disclosed. The particular modified porcine factor VIII is one in which most of the B domain has been removed through genetic engineering. This modified factor VIII is particularly useful for treatment of hemophiliacs, especially those undergoing bleeding episodes.
Abstract: A plant watering device is disclosed. The device has a preferentially water permeable membrane arranged to separate a supply of water from a root system of a plant. The membrane is arranged to allow water to permeate to water the roots.
Type:
Grant
Filed:
February 25, 2009
Date of Patent:
February 10, 2015
Assignee:
The University of Sydney
Inventors:
Bruce Gregory Sutton, Gregory Lawrence Leslie
Abstract: This invention relates to a macrolide composition, more particularly an amorphous form (Form-III) of 3R, 4S, 5S, 6R, 7R, 9R, 11S, 12R, 13S, 14R-6-[(2S,3R,4S,6R)-4-dimethylamino-3-hydroxy-6-methyloxan-2-yl]oxy-14-ethyl-7,12,13-trihydroxy-4-[(2R,4R,5S,6S)-5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl]oxy-10-(2-methoxyethoxymethoxyimino)-3,5,7,9,11,13-hexamethyl-1-oxacyclotetradecan-2-one or roxithromycin characterized by the absence of peaks in the infra-red spectrum of amorphous (Form-I11) of roxithromycin at 3577.15; 3526.03; 3465.27 and 3276.24 cm-1 relative to the infra-red spectrum of the prior art roxithromycin raw material displaying peaks at 3577.15; 3526.03; 3465.27 and 3276.24 cm-1 and further characterized by an increased solubility of at least 50% over prior art anhydrous and monohydrated roxithromycin in acetate buffer (pH 4.5), phosphate buffer (pH 6.8) and water.
Abstract: Methods of using cerium oxide nanoparticles to promote angiogenesis are described. In a particular embodiment, a method of promoting angiogenesis in animal tissue comprises contacting the tissue with a composition comprising cerium oxide nanoparticles effective for stimulating proliferation of endothelial cells associated with the tissue.
Type:
Grant
Filed:
June 7, 2012
Date of Patent:
February 10, 2015
Assignee:
University of Central Florida Research Foundation, Inc.
Abstract: The use of plasmonics enhanced photospectral therapy (PEPST) and exiton-plasmon enhanced phototherapy (EPEP) in the treatment of various cell proliferation disorders, and the PEPST and EPEP agents and probes used therein.
Abstract: A detection method for a sensor membrane formed of europium titanium oxide as part of a biosensor by using PNIPAAm for wrapping enzymes includes adding 1.0 g of NIPAAm powder to 20 ml water, heating same at 60° C. to form NIPAAm solution, and cooling the NIPAAm solution; adding 200 ?l of 98.7 wt % of APS and 50 ?l of 99 wt % of TEMED to the NIPAAm solution, uniformly mixing same, and reacting the mixture for 30 hours to prepare a transparent, gel PNIPAAm; adding 5 mg enzymes to 100 ?l of 1×PBS buffer solution, uniformly mixing same, adding 100 ?l of PNIPAAm to the buffer solution, and uniformly mixing the buffer solution; placing a biosensor on a heater for heating at a constant temperature of 37° C. with the biosensor being an EIS sensor having a sensor membrane formed of EuTixOy; and taking a measurement.
Abstract: A one step synthesis of nanocrystalline zeolites ZSM-5 and Na? from a single template system in high yield has been discovered. The size of individual nanocrystals, as well as mesopore surface area and pore volume can be controlled by adjusting the pH of the reaction mixture, as well as the hydrothermal treatment temperature and duration. The mesopore volume and size distribution show a dependence on particle size such that smaller particles lead to higher mesopore volumes and narrower pore size distributions.
Abstract: A reagent for conjugation to a biomolecule, wherein the reagent is a single molecule with at least three functional parts and has schematic structure (I): a) wherein a trifunctional cross-linking moiety is coupled to b) an affinity ligand via a linker 1, said affinity ligand being capable of binding with another molecule having affinity for said ligand, to c) an effector agent, optionally via a linker 2, said effector agent exerting its effect on cells, tissues and/or humorous molecules in vivo or ex vivo, and to d) a biomolecule reactive moiety, optionally via a linker 3, said moiety being capable of forming a bond between the reagent and the biomolecule.
Type:
Grant
Filed:
September 6, 2006
Date of Patent:
February 10, 2015
Assignees:
University of Washington, Glycorex Transplantation AB
Abstract: Disclosed are compounds for inhibiting prostaglandin transporter (PGT) activity, pharmaceuticals compositions including the compounds, and methods of treating subjects using the compounds.
Type:
Grant
Filed:
September 20, 2010
Date of Patent:
February 10, 2015
Assignee:
Albert Einstein College of Medicine of Yeshiva University
Inventors:
Victor L. Schuster, Yuling Chi, Andrew S. Wasmuth, Richard S. Pottorf, Gary L. Olson
Abstract: Various embodiments are provided for semiconductor devices including an electrically percolating source layer and methods of fabricating the same. In one embodiment, a semiconductor device includes a gate layer, a dielectric layer, a memory layer, a source layer, a semiconducting channel layer, and a drain layer. The source layer is electrically percolating and perforated. The semiconducting channel layer is in contact with the source layer and the memory layer. The source layer and the semiconducting channel layer form a gate voltage tunable charge injection barrier.
Type:
Grant
Filed:
March 4, 2011
Date of Patent:
February 10, 2015
Assignee:
University of Florida Research Foundation, Inc.
Inventors:
Andrew Gabriel Rinzler, Bo Liu, Mitchell Austin McCarthy
Abstract: Provided is a bacterium-based microrobot, wherein bacteria are attached to a part of a surface of a microstructure including at least one or more magnetic particle, for actuating a bacterium-based microrobot more effectively.
Type:
Grant
Filed:
November 8, 2012
Date of Patent:
February 10, 2015
Assignee:
Industry Foundation of Chonnam National University
Inventors:
Suk Ho Park, Jong Oh Park, Sung Jun Park
Abstract: A method for preparing nanoscale hydroxyapatite particles by combining an amount of a calcium ion source, which includes calcium acetate, and an amount of a phosphate ion source, wherein the amounts are sufficient to produce nanoscale hydroxyapatite particles and the amounts are combined under ambient conditions to produce the hydroxyapatite particles. Nanoscale hydroxyapatite particles are also presented.
Type:
Grant
Filed:
September 14, 2012
Date of Patent:
February 10, 2015
Assignee:
Rutgers, The State University of New Jersey
Abstract: The present invention includes compositions and methods for the integration of a non-allergenic nanocellulose into a wound bed. The composition may be formed into a wide variety of implants, e.g., a suture, a sheet, a compress, a bandage, a band, a prosthesis, a fiber, a woven fiber, a bead, a strip, a clasp, a prosthesis, a catheter, a screw, a bone plate, a pin, a bandage or combinations thereof.
Type:
Grant
Filed:
August 31, 2006
Date of Patent:
February 10, 2015
Assignee:
Board of Regents, The University of Texas System
Inventors:
R. Malcolm Brown, Jr., Wojciech Czaja, Marc Jeschke, David J. Young
Abstract: A system and method for detecting fake accounts in OSNs is proposed to aid the OSN provider 20 against fake users, wherein a social graph G of the OSN, with n nodes, a non-Sybil region GH and a Sybil region GS, is obtained and the following steps are performed: a trust value T(i)(v) is computed through i power iterations on each node v of the social graph G, i=0, 1, . . . O(log n) the power iterations distribute the trust value T(i)(v) from each node v to its neighbor nodes, after O(log n) power iterations, ranking nodes by a degree-normalized trust T ^ v = T ( w ) ? ( v ) deg ? ( v ) in order to obtain a ranked list of nodes, detecting fake accounts based on the obtained ranked list assigning intervals in the ranked list to a fake portion, determined by manual inspection means of the OSN provider, based on the degree-normalized trust of the nodes belonging to the intervals.
Type:
Grant
Filed:
April 23, 2013
Date of Patent:
February 10, 2015
Assignees:
Duke University, Telefonics Digital Espana, S.L.U.
Inventors:
Qiang Cao, Michael Sirivianos, Xiaowei Yang
Abstract: A method for rendering an image from a light-field camera, which generates a raw light-field image, includes: generating feature data, which includes feature elements associated with position information and obtained based on the raw light-field image and a preset threshold condition; generating a raw focused image from the raw light-field image; obtaining a virtual focus position that is designated on the raw focused image; and refocusing the raw focused image according to the virtual focus position by updating pixel values of pixels of the raw focused image that correspond respectively in position to the feature elements of the feature data, so as to generate a refocused image.
Type:
Grant
Filed:
May 16, 2014
Date of Patent:
February 10, 2015
Assignees:
National Taiwan University, Lite-On Technology Corp.