Abstract: The invention relates to a seat having a movable lumbar support. An arcuate lumbar support is mounted on a back rest frame of the seat by a mechanism which is operable to move the lumbar support forwards or backwards or to tilt the lumbar support as its axis moves vertical to effect a rolling action thereby to raise or lower the level at which it supports a seat occupant. A screwthread in the mechanism is spring-supported to reduce shock applied by the lumbar support.
Abstract: The present process involves an improvement in the hydrometallurgical recovery of metal values from metal bearing sources such as ores and the like. The metal values are obtained by subjecting a metal bearing source to a reductive roast at an elevated temperature followed by cooling the reduced metal bearing source, extracting the cooled source and recovering the resultant metal values. An improvement in this process is effected by adding a compound containing a metal of Group IA or IIA of the Periodic Table to the source before subjecting the source to the reductive roast. Following the roast the ore is quenched in an aqueous solution and thereafter subjected to an extraction step.
Abstract: A novel attenuated superactive multimetallic catalytic composite especially useful for converting hydrocarbons comprises a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component, which is maintained in the elemental metallic state during the incorporation and pyrolysis of the rhenium carbonyl component, and of a tin component. In a highly preferred embodiment, this novel catalytic composite also contains a catalytically effective amount of a halogen component. The platinum group component, pyrolyzed rhenium carbonyl component, tin component and optional halogen component are preferably present in the multimetallic catalytic composite in amounts, calculated on an elemental basis, corresponding to about 0.01 to about 2 wt. % platinum group metal, about 0.01 to about 5 wt. % rhenium, about 0.005 to about 5 wt. % tin and about 0.1 to about 3.5 wt.
Abstract: A nonacidic catalytic composite especially useful for dehydrogenating dehydrogenatable hydrocarbons comprises a combination of catalytically effective amounts of a platinum group component, a cobalt component, a cadmium component, and an alkali or alkaline earth component with a porous carrier material in amounts sufficient to result in a composite containing, on an elemental basis, about 0.01 to about 2 wt. % platinum group metal, about 0.05 to about 5 wt. % cobalt, about 0.01 to about 5 wt. % cadmium and about 0.1 to about 5 wt. % alkali metal or alkaline earth metal.
Abstract: Dehydrogenatable hydrocarbons are dehydrogenated by contacting them, at hydrocarbon dehydrogenation conditions, with a novel attenuated superactive multimetallic catalytic composite comprising a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component maintained in the elemental metallic state, and of a cadmium component. An example of the attenuated superactive nonacidic multimetallic catalytic composite disclosed herein is a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of an alkali or alkaline earth component, a cadmium component, and of a platinum group component which is maintained in the elemental metallic state during the incorporation of a rhenium carbonyl component.
Abstract: Dehydrogenatable hydrocarbons are dehydrogenated by contacting them, at hydrocarbon dehydrogenation conditions, with a novel attenuated superactive multimetallic catalytic composite comprising a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component maintained in the elemental metallic state, and of a germanium component. An example of the attenuated superactive nonacidic multimetallic catalytic composite disclosed herein is a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of an alkali or alkaline earth component, a germanium component, and of a platinum group component which is maintained in the elemental metallic state during the incorporation of the rhenium carbonyl component.
Abstract: This invention comprises a process for cracking a hydrocarbon charge stock using a used FCC catalytic composite comprising a zeolitic crystalline aluminosilicate dispersed in a porous inorganic matrix. Particles of zeolitic crystalline aluminosilicate having diameters less than the diameters of the pores of the composite are impregnated into the composite preferably by contacting the composite with an aqueous slurry of the particles and the evaporating off the water of the slurry.
Abstract: A process for the conversion of aromatic hydrocarbons, e.g., reacting an alkylating agent, preferably an olefin, with an aromatic hydrocarbon. The process uses a novel catalyst prepared by subjecting alumina to an anhydrous tetravalent titanium fluoride complex of an organic compound selected from the group of organic compounds containing at least one methoxy group per molecule of organic compounds having at least one electron donor atom and double bond per molecule, and heat treating the resulting impregnated alumina in an inert atmosphere.
Abstract: Sucrose which is found in molasses such as beet molasses or cane molasses may be selectively extracted therefrom by passing an aqueous solution of the molasses over an adsorbent comprising shaped replicates of particle aggregates consisting of a carbonaceous pyropolymer possessing recurring units containing at least carbon and hydrogen atoms. The sucrose will be selectively adsorbed thereon and separated from other sugars such as glucose, fructose, and raffinose which will inhibit the crystallization of sucrose in a subsequent operation. The sucrose is then removed from the adsorbent by treatment with a desorbent material comprising water.
Abstract: A process for cracking a hydrocarbon charge stock which uses a catalytic composite prepared by mixing a zeolitic crystalline aluminosilicate dispersed in a porous carrier material with a solution of rare earth salt, separating a filter cake from the slurry by a means not involving the washing of the filter cake and calcining the filter cake.
Abstract: A process for the conversion of aromatic hydrocarbons, e.g., reacting an alkylating agent, preferably an olefin, with an aromatic hydrocarbon. The process uses a novel catalyst prepared by subjecting alumina to an anhydrous tetravalent titanium fluoride complex of an organic compound selected from the group of organic compounds containing at least one methoxy group per molecule or organic compounds having at least one electron donor atom and double bond per molecule, and heat treating the resulting impregnated alumina in an inert atmosphere.
Abstract: A novel attenuated superactive multimetallic catalytic composite especially useful for converting hydrocarbons comprises a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component, which is maintained in the elemental metallic state during the incorporation and pyrolysis of the rhenium carbonyl component, and of a germanium component. In a highly preferred embodiment, this novel catalytic composite also contains a catalytically effective amount of a halogen component. The platinum group component, pyrolyzed rhenium carbonyl component, germanium component and optional halogen component are preferably present in the multimetallic catalytic composite in amounts, calculated on an elemental basis, corresponding to about 0.01 to about 2 wt. % platinum group metal, about 0.01 to about 5 wt. % rhenium, about 0.005 to about 5 wt. % germanium and about 0.
Abstract: A method of preparing p-aminodiphenylamines from diphenylamines is described whereby neither the N-nitrosodiphenylamine or the p-nitrosodiphenylamine need be isolated. The method rests on the discovery that alkali metal salts of p-nitrosodiphenylamines are soluble in non-aqueous organic solvent systems consisting of certain aromatic hydrocarbons and saturated aliphatic alcohols, and that such salts can be readily hydrogenated in their non-aqueous solution to the corresponding p-aminodiphenylamine.
Type:
Grant
Filed:
October 29, 1980
Date of Patent:
January 26, 1982
Assignee:
UOP Inc.
Inventors:
Ted Symon, Paul R. Kurek, Michael D. Tufano
Abstract: Metal catalyst complexes such as those containing a metal of Group VIII of the Periodic Table which have been used in organic reactions such as the hydroformylation of olefins to form alcohols may be recovered from the product alcohols by treating said alcohol with anhydrous gaseous ammonia at temperatures in the range of from about 0.degree. to about 100.degree. C. and pressures in the range of from about 5 to about 1000 psi to precipitate the solution catalyst complex and thereby enable the separation of the catalyst complex from the product to be accomplished in a relatively simple manner.
Abstract: A process for deashing primary coal liquids with a selective multi-solvent extraction wherein the coal liquids and a primary solvent are contacted initially at a temperature greater than the temperature at which the deashing extraction occurs.
Abstract: A process for separating three components from a feedstream employing an adsorbent and desorbent material which in combination have selectivities for the components in descending order of magnitude. The process uses a simulated-moving bed counter current flow system with an intermediate raffinate stream taken off the column at about the midpoint of the adsorption zone in addition to the usual extract and raffinate product streams. In a preferred embodiment the first component is para-xylene, the second component is ethyl benzene, and the third component is a mixture of meta and ortho-xylene.
Abstract: An armrest assembly for a vehicle seat includes a parrallelogram-action support mechanism for permitting upward and downward movement of the armrest while maintaining the armrest horizontal. A toothed coupling is operable to lock the support mechanism at various selected heights of the armrest. An independently operable locking device releases the armrest for pivotal upward movement from its normal horizontal position.
Abstract: N,N'-disubstituted 2,4'-diaminodiphenyl ethers are a potent antioxidant for petroleum products and petroleum-related products. In particular, the N,N'-dibenzyl derivative and other aromatic and hetero-aromatic analogs of the dibenzyl derivatives exhibit desirable antioxidant properties at levels as low as about 0.05% by weight.
Abstract: Hydrocarbons are converted with a catalyst comprising an alumina-zeolite support, a Group VIII metallic component and a Group VI-B metallic component. Key features of the process are the commingling of alumina and zeolite before the rare earth exchange of the faujasite and the extremely low sodium concentration of the finished catalyst.
Abstract: Methods of control and control systems for a catalyst regeneration process and apparatus for the oxidative removal of coke from a coke-contaminated fluid catalyst. Simultaneous production of hot regenerated catalyst and a relatively-cooler flue gas is provided. The process comprises a high temperature coke combustion zone, and a lower temperature heat removal zone. Coke contaminated catalyst, oxygen containing gas and regenerated catalyst from the heat removal zone are contacted in the high temperature combustion zone, the temperature of which is controlled by adjusting the rate at which catalyst is recycled from the heat removal zone. Catalyst maybe withdrawn from the top of the combustion zone and sent to the reaction zone at the controlled combustion zone temperature, the remainder of the catalyst and the hot flue gas pass to the upper heat removal zone, where both gas and catalyst are cooled, preferably by utilizing the catalyst as a heat transfer medium in a dense-phase heat exchange system.