Patents Assigned to UOP LLC
  • Patent number: 11507031
    Abstract: Apparatus and methods for recovering energy in a petroleum, petrochemical, or chemical plant as described. The invention relates to a recovered electric power measuring system comprising at least one processor; at least one memory storing computer-executable instructions; and at least one receiver configured to receive data from a sensor on an electrical powerline connected to a generator of a power-recovery turbine, the power-recovery turbine located in a petroleum, petrochemical, or chemical process zone wherein a portion of a first process stream flows through the power-recovery turbine and generates recovered electric power as direct current, the power-recovery turbine electrically connected to a single DC to AC inverter and the output of the DC to AC inverter electrically connected to a first substation.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: November 22, 2022
    Assignee: UOP LLC
    Inventors: Stanley J. Frey, Gregory A. Schwarzkopf, Thomas A. Ebner
  • Patent number: 11491453
    Abstract: A fluidized catalytic reactor utilizes an ascending temperature profile. The apparatus and process deliver cooler spent catalyst to a first catalyst distributor and a hotter regenerated catalyst to a second catalyst distributor that are spaced apart from each other. The reactant stream first encounters the first stream of catalyst and then encounters the second stream of catalyst. The process and apparatus stage the addition of hot catalyst to the reactant stream. The process and apparatus may be particularly advantageous in an endothermic reaction because the hotter catalyst will encounter reactants that have cooled due to the progression of endothermic reactions.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: November 8, 2022
    Assignee: UOP LLC
    Inventors: John J. Senetar, Wolfgang A. Spieker
  • Patent number: 11485694
    Abstract: Processes of producing cresols from a phenols containing feed are described. The processes involve a combination of dealkylation and transalkylation processes. The dealkylation process converts the heavy alkylphenols in an alkylphenols stream to phenol and olefins. The olefins produced in the dealkylation process are separated out. The methylphenols, which are not converted in the dealkylation process, and phenol react in the transalkylation process to generate cresols.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: November 1, 2022
    Assignees: China Petroleum & Chemical Corporation, UOP LLC
    Inventors: Shuguang Zhang, Lubo Zhou
  • Patent number: 11484875
    Abstract: A process for removing Hg2+ toxins from bodily fluids is disclosed. The process involves contacting the bodily fluid with a titanium metallate ion exchanger to remove the metal toxins in the bodily fluid, including blood and gastrointestinal fluid. Alternatively, blood can be contacted with a dialysis solution which is then contacted with the ion exchanger. The titanium metallate ion exchangers are represented by the following empirical formula: AmTiNbaSixOy. A composition is provided with the combination of the titanium metallate ion exchanger and bodily fluids or dialysis solutions. Also, provided is an apparatus comprising a matrix and the titanium metallate ion exchanger.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: November 1, 2022
    Assignee: UOP LLC
    Inventors: Gregory John Lewis, Paulina Jakubczak, Julio C. Marte, William Christopher Sheets
  • Patent number: 11479730
    Abstract: A process increases the concentration of non normal paraffins in a feed stream comprising separating a naphtha feed stream into a normal paraffin rich stream and a non-normal paraffin rich stream. The non-normal paraffin rich stream is isomerized over an isomerization catalyst to convert non-normal paraffins to normal paraffins, hydrocrack C5+ hydrocarbon to C2-C4 paraffins and produce an isomerization effluent stream. The isomerization effluent stream is separated into a C3? off gas, C4 rich stream and C5+ stream that is recycled to the naphtha feed stream. A depentanizer column may be positioned to either remove C6+ from the naphtha feed stream or from a bottoms stream from a stabilizer column. The amount of C2-C4 paraffins that are provided is increased from about 55% to as much as 77% and even more with further modifications including operating at higher temperatures or increasing the volume of catalyst.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: October 25, 2022
    Assignee: UOP LLC
    Inventors: Manoj Kumar, Mark P. Lapinski
  • Patent number: 11471839
    Abstract: A thin film composite gas separation membrane comprising a polyether block amide copolymer coating layer and a nanoporous asymmetric support membrane with nanopores on the skin layer surface of the support membrane and gelatin polymers inside the nanopores on the skin layer surface of the support membrane. A method for making the thin film composite gas separation membrane is provided as well as the use of the membrane for a variety of separations such as separations of hydrogen sulfide and carbon dioxide from natural gas, carbon dioxide removal from flue gas, fuel gas conditioning, hydrogen/methane, polar molecules, and ammonia mixtures with methane, nitrogen or hydrogen and other light gases separations, but also for natural gas liquids recovery and hydrogen sulfide and carbon dioxide removal from natural gas in a single step.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: October 18, 2022
    Assignee: UOP LLC
    Inventors: Xueliang Dong, Chunqing Liu, Howie Tran
  • Patent number: 11473837
    Abstract: A design is provided to convert a gas subcooled process plant to a recycle split vapor process for recovering ethane and propane from natural gas. When in operation, the recovery of ethane and propane can exceed 97 to 99 wt. % of the stream being processed. A second smaller demethanizer column is added to the gas subcooled process plant as well as the addition of several cryogenic pumps.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: October 18, 2022
    Assignee: UOP LLC
    Inventors: David M. Thom, Jeffrey R. Garrison, David Farr
  • Patent number: 11447390
    Abstract: An adsorption process is provided to remove oxygen from a hydrogen stream through the use of a copper material in combination with layers of adsorbent to remove water and nitrogen from a hydrogen stream. This process is particularly useful for purification of hydrogen product gas from water electrolyzers with the hydrogen product gas having greater than 99.9 mol % purity.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: September 20, 2022
    Assignee: UOP LLC
    Inventors: Bradley P. Russell, William Macallan Cady, Stephen Caskey, Nasser Khazeni
  • Patent number: 11447707
    Abstract: A process for recovering hydrogen from dehydrogenation reactor effluent is disclosed. A feed stream comprising hydrocarbons and hydrogen to a dehydrogenation reactor maintained at dehydrogenation conditions to provide a dehydrogenation reactor effluent. The dehydrogenation reactor effluent is passed to a cold box separation unit to provide a liquid hydrocarbon product stream and a recycle hydrogen stream. A return portion of the recycle hydrogen stream is passed to the reactor effluent compressor. The subject matter disclosed improved process and apparatus which enables the paraffin dehydrogenation reactor to run at reduced H2/HC ratio without requiring an investment in a resized compressor or resized turboexpanders or separators in the cold box.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: September 20, 2022
    Assignee: UOP LLC
    Inventor: Adam J Kanyuh
  • Patent number: 11447436
    Abstract: A process and system to control the final product quality in a system for separating olefins and paraffins in a membrane system. A small finishing membrane stage is added to an existing membrane system that takes a slip stream from the product, purifies it to a very high concentration of propylene and blends it back into the product stream.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: September 20, 2022
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Trung Pham, Charles P Luebke, Carl Liskey
  • Patent number: 11448461
    Abstract: A process and an apparatus are disclosed for separation of a hydrocarbon gas stream containing methane and heavier hydrocarbons and significant quantities of nitrogen and carbon dioxide. The gas stream is cooled and expanded, then fractionated in a first distillation column into a first overhead vapor and a hydrocarbon liquid stream containing the majority of the carbon dioxide. The hydrocarbon liquid stream is fractionated into a hydrocarbon vapor stream and a less volatile fraction comprised of heavier hydrocarbons. The first overhead vapor is cooled, expanded, and separated into vapor and liquid streams. Both streams are cooled and expanded before feeding a second distillation column that produces a second overhead vapor that is predominantly nitrogen and a bottom liquid that is predominantly methane. The bottom liquid is vaporized and combined with the hydrocarbon vapor stream to form a volatile residue gas fraction containing the majority of the methane.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: September 20, 2022
    Assignee: UOP LLC
    Inventors: Thai Pham, J Ascencion Anguiano, Hank M. Hudson, Kyle T. Cuellar, Adam Brostow, Stephen N Peterson, Michael C. Pierce
  • Patent number: 11441838
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent into a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is separated for forming an H2-rich stream and a first liquid phase hydrocarbon stream. The H2-rich stream may be contacted with an adsorbent to form an H2-ultra rich stream and a gas stream. C3/C4 hydrocarbons are absorbed from the gas stream with the liquid phase hydrocarbon stream. The gas stream may be contacted with an H2/hydrocarbon separation membrane to separate the PSA tail gas stream and form an H2-rich permeate stream and an H2 depleted non-permeate residue stream.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: September 13, 2022
    Assignee: UOP LLC
    Inventors: Thuy T. Vu, Robert E. Tsai, Xin X. Zhu, Amit Goyal, William Yanez, Sudipta K. Ghosh
  • Patent number: 11427771
    Abstract: A slurry separator comprising a moving blade that wipes slurry oil onto a wall of the slurry separator for separating a recovered oil stream from a concentrated residue stream has the capability of maximizing recovery of the LCO from slurry oil as well as removing both the catalyst fines as well as coke particles suspended in the slurry oil. The slurry separator can be fed directly from the main column bottoms. Advantageously, the process and apparatus can enable the FCC unit to achieve higher production of LCO and higher value clarified slurry oil more efficiently.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: August 30, 2022
    Assignee: UOP LLC
    Inventors: Keith Allen Couch, Joseph Mark Houdek
  • Patent number: 11426711
    Abstract: A method of making highly an active mixed transition metal oxide material has been developed. The method may include sulfiding the metal oxide material to generate metal sulfides which are used as catalyst in a conversion process such as hydroprocessing. The hydroprocessing may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodesilication, hydrodearomatization, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: August 30, 2022
    Assignee: UOP LLC
    Inventors: Wei Pan, Zara Osman, Jaime G. Moscoso
  • Patent number: 11420869
    Abstract: A pressure swing adsorption process is provided to remove oxygen from a hydrogen stream through the use of a copper material in combination with layers of adsorbent to remove water, C2 and C3 hydrocarbons, as well as other impurities. The feed gas comprises more than 70 mol % hydrogen, at least 1 mol % methane and more than 10 ppmv oxygen. The purified product hydrogen stream comprises greater than 99 mol % hydrogen, with less than 1 ppmv oxygen.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: August 23, 2022
    Assignee: UOP LLC
    Inventors: Bradley P. Russell, David W. Greer, Mark M. Davis, Shain Doong, Jince Sebastian
  • Patent number: 11396002
    Abstract: A plant or refinery may include equipment such as reactors, heaters, heat exchangers, regenerators, separators, or the like. Types of heat exchangers include shell and tube, plate, plate and shell, plate fin, air cooled, wetted-surface air cooled, or the like. Operating methods may impact deterioration in equipment condition, prolong equipment life, extend production operating time, or provide other benefits. Mechanical or digital sensors may be used for monitoring equipment, and sensor data may be programmatically analyzed to identify developing problems. For example, sensors may be used in conjunction with one or more system components to detect and correct maldistribution, cross-leakage, strain, pre-leakage, thermal stresses, fouling, vibration, problems in liquid lifting, conditions that can affect air-cooled exchangers, conditions that can affect a wetted-surface air-cooled heat exchanger, or the like. An operating condition or mode may be adjusted to prolong equipment life or avoid equipment failure.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: July 26, 2022
    Assignee: UOP LLC
    Inventors: Sanford Allan Victor, Phillip F. Daly, Ian G. Horn
  • Patent number: 11376548
    Abstract: Process of treating a net gas stream is disclosed. The process includes sending the net gas stream to a compressor to produce a compressed gas stream. The compressed gas stream is then sent to a pressure swing adsorption unit to produce a hydrogen product stream and a tail gas stream. Tail gas stream from the pressure swing adsorption unit is sent to a first membrane unit to produce a first permeate stream and a first non-permeate stream. Portion of the tail gas stream is sent to a second membrane unit to produce a second permeate stream and a second non-permeate stream.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: July 5, 2022
    Assignee: UOP LLC
    Inventors: Bradley P. Russell, Gautam Pandey, David A. Wegerer, Wim Elseviers
  • Patent number: 11365886
    Abstract: A chemical plant may include one or more fired heaters for heating of process streams. A fired heater may include a direct-fired heat exchanger that uses the hot gases of combustion to raise the temperature of a process fluid feed flowing through tubes positioned within the heater. Fired heaters may deliver feed at a predetermined temperature to the next stage of the reaction process or perform reactions such as thermal cracking. Systems and methods are disclosed to optimize the performance of fired heaters or reduce energy consumption of fired heaters.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: June 21, 2022
    Assignee: UOP LLC
    Inventors: Theodore Peter Faiella, Raul A. Ohaco, Colin J. Deller
  • Patent number: 11299442
    Abstract: A process for producing acetylene, ethylene, or both is disclosed. The process includes combusting a fuel stream to produce a combustion gas effluent stream and pyrolyzing a feed stream in a pyrolysis zone in the presence of the combustion gas effluent stream to produce a pyrolysis zone effluent stream which is further quenched and compressed. The compressed quenched stream is separated in a solvent separation column to produce a net gas stream comprising hydrogen, methane, and at least one carbon oxide and a product stream. A portion of the carbon oxide of the net gas stream is converted into methane in a methanation reactor and a reactor effluent stream is sent to an amine scrubber where carbon dioxide is removed and a methane containing stream is generated as an effluent. The methane containing stream is then recycled to the pyrolysis zone of the supersonic reactor.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: April 12, 2022
    Assignee: UOP LLC
    Inventors: Nathan Siedler, Charles Luebke, David Wegerer, Parag Jain
  • Patent number: 11298853
    Abstract: Processes and apparatuses for producing polymer particles with a solid state polycondensation reactor and an underwater pelletization unit. The apparatuses use a pre-conditioning zone to adjust a temperature, crystallization in addition to dust, acetaldehyde and water content of the particles from a crystallization bin. Various inert gas streams can be provided from a purification unit to remove dust, acetaldehyde, water and adjust temperature and crystallinity of the particles, as also move the particles. The precondition zones have stages that allow for the particles to accurately achieve the desired SSP reactor inlet conditions.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: April 12, 2022
    Assignee: UOP LLC
    Inventors: Raymond Shih, Jan De Ren