Patents Assigned to UT-Battelle, LLC
  • Patent number: 11473086
    Abstract: The present disclosure provides genetically modified plants, plant cells and plant tissues that show reduced lignin content as compared to a control plant which was not genetically modified. In addition, the disclosure provides methods of regulating lignin content in a plant. The disclosure also provides methods of producing bioproducts using the genetically modified plants of the instant disclosure.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: October 18, 2022
    Assignee: UT-BATTELLE, LLC
    Inventors: Meng Xie, Jin-Gui Chen, Lee E. Gunter, Sara S. Jawdy, Wellington Muchero, Gerald Tuskan, Jin Zhang
  • Patent number: 11466296
    Abstract: This disclosure provides a genetically-modified bacterium from the genus Megasphaera that comprises an exogenous nucleic acid encoding a bifunctional aldehyde/alcohol dehydrogenase that produces butanol as the final product. The disclosure further provides methods for producing butanol using such genetically-modified bacterium.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: October 11, 2022
    Assignee: UT-Battelle, LLC
    Inventors: Adam M. Guss, Lauren A. Riley
  • Patent number: 11458542
    Abstract: Detection and classification of anomalies for powder bed metal additive manufacturing. Anomalies, such as recoater blade impacts, binder deposition issues, spatter generation, and some porosities, are surface-visible at each layer of the building process. A multi-scaled parallel dynamic segmentation convolutional neural network architecture provides additive manufacturing machine and imaging system agnostic pixel-wise semantic segmentation of layer-wise powder bed image data. Learned knowledge is easily transferrable between different additive manufacturing machines. The anomaly detection can be conducted in real-time and provides accurate and generalizable results.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: October 4, 2022
    Assignee: UT-Battelle, LLC
    Inventors: Luke R. Scime, Vincent C. Paquit, Desarae J. Goldsby, William H. Halsey, Chase B. Joslin, Michael D. Richardson, Derek C. Rose, Derek H. Siddel
  • Patent number: 11446915
    Abstract: An improved method for manufacturing a continuous self-healing barrier film is provided. The method includes slot-die coating opposing sides of a separator substrate with a curing agent slurry and a curable resin slurry using a single-sided coating line or a tandem coating line. The method also includes sequentially interleaving inner and outer protective layers via a continuous roll-to-roll process to create a multi-layered barrier film. The barrier film can optionally be formed into a barrier envelope, and an insulating core material can be inserted into the barrier envelope to define an enclosure. Evacuating and sealing the enclosure along a perimeter of the barrier envelop forms a self-healing vacuum insulation panel with excellent properties for use as a building material and in refrigeration systems, for example. The barrier film can alternatively be used in the manufacture of tires, roofing, cargo containers, food packaging, and pharmaceutical packaging, for example.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: September 20, 2022
    Assignee: UT-BATTELLE, LLC
    Inventors: Kaushik Biswas, David Lee Wood, III, Kelsey M. Grady, Natasha B. Ghezawi, Pengfei Cao, Tomonori Saito
  • Patent number: 11441035
    Abstract: A composition comprising lignin compounds possessing 8-30 (or 5-15 or 8-12) phenyl rings interconnected by ether and alkylene linkages and containing hydroxy and/or methoxy groups attached to said phenyl rings, wherein said composition possesses a glass transition temperature of 80-100° C. (or 95-98° C.) and a degree of substitution (DS) of carboxylic acid groups per phenyl ring of at least 0.5 and a DS of methoxy groups per phenyl ring of no more than 1.2, 1.1, or 1.0, wherein at least 90 wt % of said lignin compounds has a molecular weight within a range of 500-5000 g/mol, 1500-3000 g/mol, or 2000-2500 g/mol and/or wherein the molecular weight distribution of the lignin compounds is characterized by a polydispersity index of 1.0-1.5, 1.0-1.4, or 1.0-1.3, and wherein other lignin compounds not possessing the above characteristics are not present. Methods for producing the lignin extract and lignin copolymers and blends produced therefrom are also described.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: September 13, 2022
    Assignee: UT-Battelle, LLC
    Inventors: Amit K. Naskar, Mengmeng Cui
  • Patent number: 11441152
    Abstract: This disclosure provides methods of improving callus formation in plants. This disclosure further provides genetically engineered plants with improved callus formation.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: September 13, 2022
    Assignee: UT-BATTELLE, LLC
    Inventors: Wellington Muchero, Gerald Tuskan, Jin-Gui Chen, Lee E. Gunter
  • Patent number: 11437153
    Abstract: A method for manufacturing a nuclear fuel compact is provided. The method includes forming an additive structure, consolidating a fuel matrix around the additive structure, and thermally processing the fuel matrix to form a fuel compact in which the additive structure is encapsulated therein. The additive structure optionally includes a vertical segment and a plurality of arm segments that extend generally radially from the vertical segment for conducting heat outwardly toward an exterior of the fuel compact. In addition to improving heat transfer, the additive structure may function as burnable absorbers, and may provide fission product trapping.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: September 6, 2022
    Assignee: UT-BATTELLE, LLC
    Inventors: Kurt A. Terrani, Andrew T. Nelson
  • Patent number: 11429865
    Abstract: A system and method design and optimize neural networks. The system and method include a data store that stores a plurality of gene vectors that represent diverse and distinct neural networks and an evaluation queue stored with the plurality of gene vectors. Secondary nodes construct, train, and evaluate the neural network and automatically render a plurality of fitness values asynchronously. A primary node executes a gene amplification on a select plurality of gene vectors, a crossing-over of the amplified gene vectors, and a mutation of the crossing-over gene vectors automatically and asynchronously, which are then transmitted to the evaluation queue. The process continuously repeats itself by processing the gene vectors inserted into the evaluation queue until a fitness level is reached, a network's accuracy level plateaus, a processing time period expires, or when some stopping condition or performance metric is met or exceeded.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: August 30, 2022
    Assignee: UT-BATTELLE, LLC
    Inventors: Robert M. Patton, Steven R. Young, Derek C. Rose, Thomas P. Karnowski, Seung-Hwan Lim, Thomas E. Potok, J. Travis Johnston
  • Patent number: 11420524
    Abstract: A method for wirelessly or conductively (non-wireless) providing AC or DC power in AC or DC load applications and bidirectional applications.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: August 23, 2022
    Assignee: UT-Battelle, LLC
    Inventors: Erdem Asa, Veda Prakash Galigekere, Omer C. Onar, Burak Ozpineci, Jason L. Pries, Gui-Jia Su
  • Patent number: 11417508
    Abstract: A system for sampling a liquid includes a sample fluid conduit including a membrane having pores. The membrane prevents the passage of the sample liquid through the pores at a first pressure of the sample liquid in the sample fluid conduit. A surface sampling capture probe has a distal end. The capture probe includes a solvent supply conduit and a solvent exhaust conduit. A solvent composition flowing at the distal end of the capture probe establishes a liquid junction with the membrane and establishes a second pressure within the liquid junction at the membrane. The second pressure is lower than the first pressure. Sample liquid will be drawn through the pores of the membrane by the second pressure at the liquid junction. A method for sampling a liquid and for performing chemical analysis on a liquid are also disclosed.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: August 16, 2022
    Assignee: UT-BATTELLE, LLC
    Inventors: John F. Cahill, Vilmos Kertesz, Scott T. Retterer
  • Patent number: 11411724
    Abstract: Continuous variable quantum secret sharing (CV-QSS) technologies are described that use laser sources and homodyne detectors. Here, a Gaussian-modulated coherent state (GMCS) prepared by one device passes through secure stations of other devices sequentially on its way to a trusted device, and each of the other devices coherently adds a locally prepared, independent GMCS to the group of propagating GMCSs. Finally, the trusted device measures both the amplitude and the phase quadratures of the received group of coherent GMCSs using double homodyne detectors. The trusted device suitably uses the measurement results to establish a secure key for encoding secret messages to be broadcast to the other devices. The devices cooperatively estimate, based on signals corresponding to their respective Gaussian modulations, the trusted device's secure key, so that the cooperative devices can decode the broadcast secret messages with the secure key.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: August 9, 2022
    Assignee: UT-Battelle, LLC
    Inventors: Warren P. Grice, Bing Qi
  • Patent number: 11402723
    Abstract: A nonlinear fiber interferometer is disclosed suitable for fiber sensor and other applications. A first nonlinear fiber section amplifies probe and conjugate sidebands of a pump through four-wave mixing. A second section introduces a phase shift to be measured, for example from a sensor. A third nonlinear fiber section amplifies with phase-sensitive gain to increase signal-to-noise ratio. Based on phase-sensitive output power of probe and/or conjugate components, the phase shift can be measured. Superior performance can be obtained by balancing gain between the (first and third) nonlinear sections. Non-fiber, for example photonic integrated circuit, embodiments are disclosed. Differential sensing, alternative detection schemes, sensing applications, associated methods, and other variations are disclosed.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: August 2, 2022
    Assignee: UT-Battelle, LLC
    Inventors: Joseph M. Lukens, Nicholas A. Peters, Raphael C. Pooser
  • Patent number: 11404180
    Abstract: Collimators and other components for use in neutron scattering experiments or to provide neutron shielding in nuclear reactors or accelerator based neutron sources are produced by additive manufacturing from neutron absorbing material, such as boron carbide (B4C) or isotopically enriched boron carbide (10B).
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: August 2, 2022
    Assignee: UT-Battelle, LLC
    Inventors: David C. Anderson, Anibal J. Ramirez-Cuesta, Matthew B. Stone, Amelia M. Elliott, Derek H. Siddel
  • Patent number: 11391651
    Abstract: A system and method for sampling a sample material includes a device for directing sample into a capture probe. The device for supplying sample material to the probe can be a device for radiating energy to the surface to eject sample from the sample material. A probe includes an outer probe housing having an open end. A liquid supply conduit has an outlet positioned to deliver liquid to the open end. An exhaust conduit removes liquid from the open end of the housing. The liquid supply conduit can be connectable to a liquid supply for delivering liquid at a first volumetric flow rate to the open end of the housing. A liquid exhaust system can be in fluid connection with the liquid exhaust conduit for removing liquid from the liquid exhaust conduit at a second volumetric flow rate such that gas with sample is withdrawn with the liquid.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: July 19, 2022
    Assignee: UT-BATTELLE, LLC
    Inventors: Vilmos Kertesz, Gary J. Van Berkel
  • Patent number: 11394020
    Abstract: A cathode for a lithium battery includes LiNi0.5-x/2Mn0.5-x/2MxO2 where M is at least one selected from the group consisting of Mo, Ti, Cr, Zr and V, and x is between 0.005-0.02. The LiNi0.5-x/2Mn0.5-x/2MxO2 can be coated with Mn2P2O7. The Mn2P2O7 can be 1-3 wt. %, based on the total weight of the LiNi0.5-x/2Mn0.5-x/2MxO2 and Mn2P2O7. A cathode composition, a lithium battery, and a method of making a lithium battery are also disclosed.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: July 19, 2022
    Assignee: UT-BATTELLE, LLC
    Inventors: Jagjit Nanda, Ilias Belharouak, Ethan C. Self, Devendrasinh Udaisinh Darbar
  • Patent number: 11384219
    Abstract: The invention provides a method of making a electrocatalyst from waste tires. The method comprises the steps of providing rubber pieces; optionally contacting the rubber pieces with a sulfonation bath to produce sulfonated rubber; pyrolyzing the rubber to produce tire-derived carbon composite comprising carbon black, wherein the pyrolyzing comprises heating to at least 200° C.-2400° C.; activating the tire-derived carbon composite by contacting the tire-derived carbon composite with an alkali anion compound to provide activated tire-derived carbon supports; and loading the activated carbon-based supports with platinum cubes. In another embodiment, the tire-derived carbon composite is activated by annealing in a carbon dioxide atmosphere.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: July 12, 2022
    Assignees: UT-BATTELLE, LLC, UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION
    Inventors: Amit K. Naskar, Mariappan Paranthaman, Xuan Yang, Younan Xia, Zachary D. Hood, Yunchao Li
  • Publication number: 20220213490
    Abstract: Disclosed herein are vectors and components for a nucleic acid cloning system, and methods of use of the vectors and components in cloning nucleic acid fragments of interest. The cloning system includes two families of destination vectors which can be used in alternating form to systematically combine nucleic acid fragments of interest.
    Type: Application
    Filed: December 30, 2020
    Publication date: July 7, 2022
    Applicant: UT-Battelle, LLC
    Inventors: Gerald A. Tuskan, Xiaohan Yang, Henrique Cestari De Paoli
  • Patent number: 11369944
    Abstract: An organic polymer composition (OPC) comprising guanidinium-containing A units interconnected with B units of the formula *—R*)r, wherein each asterisk (*) in A units denotes a connection point with an asterisk in B units; R is a hydrocarbon linking group containing at least one carbon atom; r is an integer of 1, 2, or 3; and the composition necessarily includes an anionic species Xm? with a magnitude of charge m of at least 1, wherein the sum of negative charge provided by anionic species Xm? counterbalances the total positive charge provided by the A units. Also described herein is a method for removing one or more oxoanions from an aqueous source by (i) contacting the aqueous source with the above described OPC to result in absorption of the oxoanion into the OPC to produce an oxoanion-containing OPC; and (ii) removing the oxoanion-containing OPC from the aqueous source.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: June 28, 2022
    Assignee: UT-Battelle, LLC
    Inventor: Santa Jansone-Popova
  • Patent number: 11370988
    Abstract: A lubricant composition comprising: (i) silver or gold nanoparticles, each of which is encapsulated by a layer of alkylthiol or alkylamine molecules; (ii) palladium or platinum nanoparticles, each of which is encapsulated by a layer of alkylthiol or alkylamine molecules; and (iii) a fluid in which components (i) and (ii) are present. Further described are methods for applying the lubricant composition onto a mechanical device for which lubrication is beneficial, with resulting improvement in friction and wear reduction and/or corrosion inhibition.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: June 28, 2022
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation
    Inventors: Chanaka Kapila Kumara Ihala Gamaralalage, Jun Qu
  • Patent number: 11370027
    Abstract: Disclosed herein is a method comprising disposing a container containing a metal and/or ferromagnetic solid and abrasive particles in a static magnetic field; where the container is surrounded by an induction coil; activating the induction coil with an electrical current, to heat up the metallic or ferromagnetic solid to form a fluid; generating sonic energy to produce acoustic cavitation and abrasion between the abrasive particles and the container; and producing nanoparticles that comprise elements from the container, the metal and/or the ferromagnetic solid and the abrasive particles. Disclosed herein too is a composition comprising first metal or a first ceramic; and particles comprising carbides and/or nitrides dispersed therein. Disclosed herein too is a composition comprising nanoparticles comprising chromium carbide, iron carbide, nickel carbide, ?-Fe and magnesium nitride.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: June 28, 2022
    Assignees: University of Florida Research Foundation, Inc., UT-BATTELLE, LLC
    Inventors: Michele Viola Manuel, Hunter B. Henderson, Orlando Rios, Gerard M. Ludtka