Patents Assigned to UTC Power Corporation
-
Patent number: 8574782Abstract: An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.Type: GrantFiled: April 29, 2010Date of Patent: November 5, 2013Assignee: UTC Power CorporationInventors: Jean Yamanis, Justin R. Hawkes, Louis Chiapetta, Jr., Connie E. Bird, Ellen Y. Sun, Paul F. Croteau
-
Publication number: 20130281555Abstract: A proton exchange material includes perfluorinated carbon backbone chains and side chains extending off of the perfluorinated carbon backbone chains. The perfluorinated side chains include cross-link chains that have multiple sulfonimide groups, —SO2—NH—SO2—.Type: ApplicationFiled: January 11, 2011Publication date: October 24, 2013Applicants: UTC Power CorporationInventors: Zhiwei Yang, Mallika Gummalla, Ned E. Cipollini, Fuqiang Liu, Yoichi Hosokawa, Takumi Taniguchi, Joseph S. Thrasher, Richard Edward Fernandez, Todd S. Sayler, Alfred Waterfeld
-
Publication number: 20130273448Abstract: A fuel pressure regulator unit is mounted on a manifold. The fuel pressure regulator unit includes a housing providing a fuel inlet passage, a regulated fuel outlet passage, a sense pressure passage, a recycle passage and a mixed fuel passage. A pressure regulator is provided in the housing and is arranged fluidly between the fuel inlet passage and the regulated fuel outlet passage. The sense passage fluidly interconnects the mixed fuel passage and the pressure regulator. The pressure regulator is configured to regulate the flow of fuel from the fuel inlet passage to regulated fuel passage in response to a pressure from the sense pressure passage. An ejector is arranged within the housing and fluidly between the regulated fuel outlet passage and the mixed fuel passage. An ejector is configured to receive recycled fuel from the recycle passage.Type: ApplicationFiled: February 3, 2011Publication date: October 17, 2013Applicant: UTC Power CorporationInventors: Garrett W. Fink, David Melo Ferreira, Christopher John Carnevale
-
Patent number: 8518598Abstract: The plant (10) includes a molten metal anode (44) passing through a fuel cell (12) anode inlet (46) having a first interrupted flow generator (104), then into an anode flow field (42) of the fuel cell (12), and leaving the anode flow field (42) through an anode outlet (48) having a second interrupted flow generator (113). The molten anode (44) then flows into a reduction reactor (50) where the oxidized anode (44) is reduced by a reducing fuel (61). The molten anode (44) is then cycled back into the first interrupted flow generator (104) and anode flow field (42). Interrupting flow of the molten anode (44) prevents electrical continuity between the anode inlet (46) and the anode outlet (48) through the molten anode (44) within the anode flow field (42). This facilitates stacking the planar fuel cells in series within a fuel cell stack to build voltage.Type: GrantFiled: April 25, 2012Date of Patent: August 27, 2013Assignee: UTC Power CorporationInventor: Jean Yamanis
-
Patent number: 8507137Abstract: A fuel cell includes a membrane electrode assembly comprised of a membrane sandwiched between anode and cathode catalyst structures. An anode separator plate and a cathode separator plate are arranged adjacent to the membrane electrode assembly opposite from one another. The anode and cathode separator plates include opposing sides in which one of the opposing sides of the anode and cathode respectively have fuel and oxidant flow fields in communication with the membrane. The anode separator plate is a structure having a first water permeability and is configured to permit passage of water between its opposing sides and with its flow field, and the cathode separator plate comprises a structure having a second water permeability less than the first water permeability of the anode separator plate. In one example, the anode is provided by a porous separator plate, and the cathode is provided by a non-porous, or solid, plate.Type: GrantFiled: April 23, 2008Date of Patent: August 13, 2013Assignee: UTC Power CorporationInventors: Glenn Michael Allen, Gennady Resnick
-
Publication number: 20130197729Abstract: The performance of a fuel cell power plant that decays, in an electric vehicle which makes frequent starts, is recovered by partially shutting down (65-67) the power plant. Recovery is enabled by a recovery enable flag (25) upon conditions such as vehicle using (22) low or no power (16), vehicle speed at or near zero (22), electric storage SOC above a threshold (23), and no recovery (19) during the last half-hour (or other duration). The recovery restart resets a timer (79) to ensure (19) that recovery is not attempted too often. The power plant then remains in a recovery stand-by mode (72) until a recovery restart flag (35) is set to 1 (74). The restart causes start-up of the fuel cell power plant (50, 52, 55), reaching an operational mode (57).Type: ApplicationFiled: September 15, 2010Publication date: August 1, 2013Applicant: UTC Power CorporationInventors: Sitaram Ramaswamy, Venkateshwarlu Yadha, Matthew P. Wilson
-
Patent number: 8486573Abstract: An example fuel cell component includes an energizeable coating on at least a portion of a surface of the fuel cell component. A controller is configured to energize the energizeable coating to break a bond between any ice and the surface of the fuel cell component.Type: GrantFiled: December 21, 2007Date of Patent: July 16, 2013Assignee: UTC Power CorporationInventors: Sitaram Ramaswamy, Kazuo Saito
-
Patent number: 8470483Abstract: An example fuel cell stack (10, 40) includes a cathode plate (60) having oxidant flow passages (62) and coolant flow passages (64), and a porous anode plate (42) adjacent the coolant flow passages (64). The porous anode plate (42) includes fuel flow passages (46) and a network of pores (44) that fluidly connect the fuel flow passages (46) and the coolant flow passages (64). A membrane electrode arrangement (50) adjacent the fuel flow passages (46) generates electricity in a fuel cell reaction. A hydrophilic gas diffusion layer (48) between the membrane electrode arrangement (50) and the porous anode plate (42) distributes water from the coolant flow passages (64) to maintain or establish a wet seal (70) within the network of pores (44) that limits fuel transport through the network of pores (44) from the fuel flow passages (46) to the coolant flow passages (64).Type: GrantFiled: December 27, 2006Date of Patent: June 25, 2013Assignee: UTC Power CorporationInventor: Paravastu Badrinarayanan
-
Patent number: 8455146Abstract: A fuel cell power plant (10) includes a power supply (58) that directs a direct current to catalysts (24), (26) of a fuel cell (22) after terminating flow of electricity to a primary load (52), and after flow of an oxidant adjacent the cathode catalyst (26) is terminated, and while a reformate fuel is directed adjacent the anode catalyst (24). Pure hydrogen fuel generated thereby at the cathode catalyst (26) is directed into a hydrogen storage tank (62). Upon start-up of the power plant (10), the stored hydrogen gas is directed from the tank (62) to flow adjacent the anode catalyst (24) while a reformer (12) is being warmed up for operation, to provide virtually instantaneous start-up of the plant (10). Optionally, the stored hydrogen may be used occasionally during operation with the reformate fuel to meet an increased demand for electricity.Type: GrantFiled: December 20, 2007Date of Patent: June 4, 2013Assignee: UTC Power CorporationInventor: Michael L. Perry
-
Patent number: 8399139Abstract: A system and method for recovering and separating water vapor and electrolyte vapor from an exhaust stream (22) of a fuel cell uses a membrane tube (72) comprising membrane (74) having an outer wall (76) and an inner wall (78), wherein exhaust stream (22) is directed to contact outer wall (76), electrolyte vapor is condensed on outer wall (76), and water vapor is condensed inside the membrane (74), the condensed water drawn from the membrane (74) to inner wall (78), leaving behind condensed electrolyte (88) on outer wall (76).Type: GrantFiled: December 16, 2008Date of Patent: March 19, 2013Assignee: UTC Power CorporationInventors: Sitaram Ramaswamy, Eric J. Gottung
-
Patent number: 8389175Abstract: A fuel cell (70) having an anode (72), a cathode (78) and an electrolyte (76) between the anode (72) and the cathode (78) includes a cathode catalyst (80) formed of a plurality of nanoparticles. Each nanoparticle (20) has a plurality of terraces (26) formed of platinum surface atoms (14), and a plurality of edge (28) and corner regions (29) formed of atoms from a second metal (30)—The cathode catalyst may be formed by combining a platinum nanoparticle with a metal salt in a solution. Ions from the second metal react with platinum and replace platinum atoms on the nanoparticle. The second metal atoms at the corner and edge regions of the nanoparticle, as well as at any surface defects, result in a more stable catalyst structure. In some embodiments, the fuel cell (70) is a proton exchange membrane fuel cell and the nanoparticles are tetrahedron-shaped. In some embodiments, the fuel cell (70) is a phosphoric acid fuel cell and the nanoparticles are cubic-shaped.Type: GrantFiled: May 16, 2008Date of Patent: March 5, 2013Assignee: UTC Power CorporationInventors: Minhua Shao, Belabbes Merzougui, Patrick L. Hagans, Susanne M. Opalka
-
Patent number: 8357253Abstract: A method of heat treating a substrate for a fuel cell includes stacking substrates to form a group. A dimension is determined for a plate corresponding to a resulting mass that is less than a predetermined mass. The plate is arranged above the group to apply a weight of the plate to the group. The resulting masses for spacer plates and intermediate lifting plates, for example, are minimized to reduce the pressure differential between the bottom and top substrates in the heat treat assembly. In another disclosed method, a dimension for a plate, such as a top plate, is determined that corresponds to a resulting mass that is greater than a predetermined mass. The plate is arranged above the group to apply a weight of the plate to the group. The top plate resulting mass is selected to minimize a variation in the average pressure of the substrates throughout the heat treat assembly.Type: GrantFiled: December 17, 2007Date of Patent: January 22, 2013Assignee: UTC Power CorporationInventor: Richard D. Breault
-
Patent number: 8358136Abstract: An arrangement for monitoring the current or state of charge (SOC) of an energy system (230) having one or more series-connected strings (S1, S2, . . . Sn) of battery cells (C1, C2, . . . Cn). The battery cells each have respective dissipative devices (D1, D2, . . . Dn) selectively connectable in parallel therewith for balancing cell voltages in the string. The dissipative devices are of predetermined, typically equal, impedance value. The voltage across each cell (Vc1, Vc2, . . . Vcn) may be separately monitored, such that by dividing the monitored voltage across a cell by the impedance value of a dissipative device connected in parallel therewith, the dissipative current is determined. A summation of all of the dissipative currents yields an error value, which error value is then removed from the measured gross current (Ibat) flowing through the combined battery cells and dissipative devices to yield a corrected value of current (Ibatnet). A corrected SOC value (Qnet) is obtainable in a similar manner.Type: GrantFiled: September 20, 2007Date of Patent: January 22, 2013Assignee: UTC Power CorporationInventor: Steven J. Fredette
-
Patent number: 8343256Abstract: An integrated contaminant separator and water-control loop (10) decontaminates a fuel reactant stream of a fuel cell (12). Water passes over surfaces of an ammonia dissolving means (61) within a separator scrubber (58) while the fuel reactant stream simultaneously passes over the surfaces to dissolve contaminants from the fuel reactant stream into the water. An accumulator (68) collects the separated contaminant stream, and ion exchange material (69) integrated within the accumulator removes contaminants from the stream. A water-control pump (84) directs flow of a de-contaminated water stream from the accumulator (68) through a water-control loop (78) having a heat exchanger (86) and back onto the scrubber (58) to flow over the packed bed (62). Separating contaminants from the fuel reactant stream and then isolating and concentrating the separated contaminants within the ion exchange material (69) minimizes cost and maintenance requirements.Type: GrantFiled: December 27, 2007Date of Patent: January 1, 2013Assignee: UTC Power CorporationInventors: Michael T. Lines, Derek W. Hildreth, John L. Preston, Jr.
-
Publication number: 20120329642Abstract: A fuel cell catalyst comprises a support having a core arranged on the support. In one example, the core includes palladium nanoparticles. A layer, which is gold in one example, is arranged on the core. A platinum overlayer is arranged on the gold layer. The intermediate gold layer greatly increases the mass activity of the platinum compared to catalysts in which platinum is deposited directly onto the palladium without any intermediate gold layer.Type: ApplicationFiled: December 28, 2009Publication date: December 27, 2012Applicant: UTC Power CorporationInventor: Minhua Shao
-
Patent number: 8318362Abstract: A fuel cell 12 has a liquid electrolyte 20, a cathode electrode 28, and an anode electrode 26. The fuel cell includes an electrolyte condensation zone 58 extending from an edge 56 of a first catalyst layer 36 on the cathode electrode to an outer edge 48 of an edge seals 52 and 49. An anode electrode has an anode catalyst layer 30 with an end substantially coinciding with an inner edge 53 of the edge seals. The acid condensation zone is located near the reactant exit, so that electrolyte that has evaporated into the reactant stream can condense out before leaving the fuel cell for re-absorption back into the fuel cell.Type: GrantFiled: May 16, 2007Date of Patent: November 27, 2012Assignee: UTC Power CorporationInventors: Richard D. Breault, Robert R. Fredley
-
Patent number: 8318369Abstract: A fuel cell cooling system includes a fuel cell having a liquid loop that produces water vapor. An antifreeze cooling loop includes an inductor that receives the water vapor and introduces the water vapor to an antifreeze. The water is separated from the antifreeze and returned to the liquid cooling loop as liquid water after the mixture of condensed water vapor and antifreeze has passed through a radiator. Water in the liquid cooling loop exits the fuel cell and passes through a restricting valve thereby lowering the pressure of the water. A flash cooler downstream from the restricting valve collects the water vapor and provides it to the inductor in the antifreeze cooling loop. The flash cooling in the first cooling loop provides a first cooling capacity that is low temperature and pressure compatible with fuel cell operation.Type: GrantFiled: May 2, 2012Date of Patent: November 27, 2012Assignee: UTC Power CorporationInventor: Leslie L. VanDine
-
Patent number: 8304365Abstract: A stabilized platinum nanoparticle has a core portion surrounded by a plurality of outer surfaces. The outer surfaces include terrace regions formed of platinum atoms, and edge and corner regions formed of atoms from a second metal. The stabilized nanoparticle may be formed by combining a platinum nanoparticle with a metal salt in a solution. Ions of the second metal react with platinum and replace platinum atoms on the nanoparticle. Platinum atoms from the edge and corner regions react with the second metal ions quicker than surface atoms from the terraces, due to a greater difference in electrode potential between the platinum atoms at the edge and corner regions, as compared to the second metal in the solution. The platinum nanoparticle may include surface defects, such as steps and kinks, which may also be replaced with atoms of the second metal. In an exemplary embodiment, the platinum nanoparticle is a cathode catalyst in an electro-chemical cell.Type: GrantFiled: May 16, 2008Date of Patent: November 6, 2012Assignee: UTC Power CorporationInventors: Minhua Shao, Belabbes Merzougui, Patrick L. Hagans, Susanne M. Opalka
-
Patent number: 8298725Abstract: A method of making an electrochemical cell electrode substrate includes creating an aqueous or dry mixture of chopped carbon fibers, chopped cross-linkable resin fibers that are still fuseable after being formed into a felt, such as novolac, a temporary binder, such as polyvinyl alcohol fiber or powder, forming a non-woven felt from either an aqueous suspension of the aqueous mixture or an air suspension of the dry mixture, by a non-woven, wet-lay or dry-lay, respectively, felt forming process, a resin curing agent, such as hexamethylene tetramine may be included in the aqueous or dry mixture, or it may be coated onto the formed felt; pressing one or more layers of the formed felt for 1-5 minutes to a controlled thickness and a controlled porosity at a temperature at which the resin melts, cross-links and then cures, such as 150° C.-200° C.; and heat treating the pressed felt in a substantially inert atmosphere, first to 750° C.-1000° C. and then to 1000° C.-3000° C.Type: GrantFiled: March 29, 2007Date of Patent: October 30, 2012Assignee: UTC Power CorporationInventor: Richard D. Breault
-
Patent number: 8288054Abstract: A membrane electrode assembly includes an anode, a cathode, a membrane disposed between the anode and the cathode, wherein at least one of the anode, cathode and membrane contains a hydrocarbon ionomer, and an electrode catalyst disposed in at least one of the anode and the cathode, wherein the catalyst is a metal alloy catalyst.Type: GrantFiled: October 27, 2005Date of Patent: October 16, 2012Assignee: UTC Power CorporationInventors: Sathya Motupally, Ned Cipollini, Lesia Protsailo, Andrew Haug, Tommy Skiba, Chi-Hum Paik