Abstract: A non-evaporable getter 1 includes a mesh 3, a frame 2 which is attached to the mesh 3 and suppresses deformation of the mesh 3, and a powder-state getter material 4 which is surrounded by the mesh 3 and the frame 2, and whose particle size is larger than a mesh opening of the mesh 3.
Abstract: A non-evaporable getter 1 includes a mesh 3, a frame 2 which is attached to the mesh 3 and suppresses deformation of the mesh 3, and a powder-state getter material 4 which is surrounded by the mesh 3 and the frame 2, and whose particle size is larger than a mesh opening of the mesh 3.
Abstract: A vacuum measurement device includes a grid (10) and an electron source (20) provided inside a vacuum vessel, and an ion beam (100) extracted outside the grid is captured by an ion collector (40) and is converted into a current signal. The grid (10) is a grid-shaped cylinder, and an ion outlet (11) is opened and elongated in the longitudinal direction along the side surface of the grid (10). The vacuum measurement device includes a primary ion collector (40) capturing specific ions and a secondary ion collector (50) capturing other ions. The gas molecule density of the ion source is obtained from a total current of the primary and secondary ion collectors, and a ratio of the gas molecule density of the specific ions relative to the gas molecule density is obtained from a ratio of the current of the primary ion collector (40) relative to the total current.
Abstract: An ionization vacuum device measures a pressure in a vacuum vessel, and has: an anode provided inside the vacuum vessel; a cathode provided inside the vacuum vessel; a power source for discharge that supplies electric power for discharge between the anode and the cathode; a power source for cathode-heating that supplies power for heating to the cathode, means for forming a magnetic field in a space between the anode and the cathode; control means for controlling so as to heat said cathode by said power source for cathode-heating while discharge of gas inside said vacuum vessel is caused, and so as to maintain the temperature of said cathode within a temperature range where thermonic electrons are not emitted from said cathode.
Abstract: In a quadrupole mass spectrometer which measures partial pressure strength according to a gas type in a vacuum system from ion current intensity, a quadrupole mass spectrometer with a total pressure measurement electrode has a total pressure measurement electrode for examining an ion density disposed in a demarcation space which is comprised of a grid electrode and an ion focusing electrode. And, a vacuum system is provided with only the quadrupole mass spectrometer which measures partial pressure strength according to a gas type in the vacuum system from an ion current intensity and does not have an ionization vacuum gauge other than the quadrupole mass spectrometer.
Abstract: The present invention relates to a manufacturing method of a material for vacuum device used in a vacuum apparatus that generates ultra-high vacuum and performs processing.
Abstract: A heating device includes a first electrode and a second electrode including a planar portion providing a support surface for supporting an object to be heated in an external gaseous atmosphere to which the object to be heated and the support surface are exposed. The second electrode is formed as an enclosure enclosing and spaced from at least a portion of first electrode to define an interior space therebetween isolated from the external gaseous atmosphere. An exhaust port provides communication with the interior space for reducing the pressure within the interior space. A power supplies current between the first and second electrodes to produce an electric discharge within the internal space, thereby heating the second electrode and the object supported thereon.
Abstract: The present invention relates to a manufacturing method of a material for vacuum device used in a vacuum apparatus that generates ultra-high vacuum and performs processing.