Abstract: Multi-layer metal or pseudometallic materials having engineered anisotropy are disclosed. The multi-layer materials having defined engineered grain orientations in each layer of the multi-layer material and bond layers between adjacent layers orthogonal to the grain orientations. This configuration distributes applied stress across the plurality of layers in the multi-layer metal material and around a neutral axis of the multi-layer metal material and increases the overall mechanical properties of the disclosed multi-layer metal material relative to conventional wrought metal materials of the same or similar chemical constitution. The microstructure of each layer, group of layers, or across multiple layers may be tailored to the intended application of a device made from the material. Individual layers may be tuned for property variations, such as gradients, or to adjust the bond layer characteristics.
Type:
Grant
Filed:
May 21, 2021
Date of Patent:
April 15, 2025
Assignee:
VACTRONIX SCIENTIFIC, LLC
Inventors:
Scott P. Carpenter, Tianzong Xu, Harshal Surangalikar
Abstract: Ternary and quaternary shape memory alloys, particularly nickel-titanium based quaternary and quaternary shape memory alloys, are disclosed and made by a method employing physical vapor deposition (PVD), such as by sputtering, of NiTiX, wherein X is a ternary metal constituent. By employing PVD processing, ternary and quaternary NiTi alloy bulk materials may be made in in the as-deposited state such that the configuration and conformation of a desired precursor material, e.g., wires, tubes, planar materials, curvilinear, or as the near finished end product, such as a hypotube for stent manufacture, semilunar for cardiac valves or conical for embolic or caval filters, is formed on a removable deposition substrate in the configuration and conformation of the precursor material or near-finished end product.
Abstract: The invention relates to medical devices that has a surface configured to promote the migration of cells onto the surface of the medical device. In particular, the surface of the medical device has a noncontiguous pattern of topographical features formed therein or thereon.
Type:
Grant
Filed:
March 13, 2013
Date of Patent:
June 29, 2021
Assignee:
VACTRONIX SCIENTIFIC LLC
Inventors:
Scott Carpenter, Michael Poor, Julio C. Palmaz
Abstract: The present invention is a multi-layer modular capacitor that can be adapted to be electrically coupled to other multi-layer modular capacitors and formed into a structural piece that is electrically coupled to an electrical device requiring a power supply. One aspect of the invention includes a method of forming the multi-modular capacitor.
Type:
Grant
Filed:
November 21, 2017
Date of Patent:
August 6, 2019
Assignee:
VACTRONIX SCIENTIFIC, LLC
Inventors:
Christian Gaston Palmaz, Julio C. Palmaz
Abstract: An implantable biocompatible material includes one or more vacuum deposited layers of biocompatible materials deposited upon a biocompatible base material. At least a top most vacuum deposited layer includes a homogeneous molecular pattern of distribution along the surface thereof and comprises a patterned array of geometric physiologically functional features.
Abstract: Implantable materials having defined patterns of affinity regions for binding endothelial cells and providing for directed endothelial cell migration across the surface of the material. The affinity regions include photochemically altered regions of a material surface and physical members patterned on the material surface that exhibit a greater affinity for endothelial cell binding and migration than the remaining regions of the material surface.
Abstract: This invention is directed to a pattern transfer device and assembly for mass-transfer/fabrication of micro-sized features/structures onto the inner diameter (ID) surface of a stent. This new approach is provided by technique of through mask electrical micro-machining. One embodiment discloses an application of electrical micro-machining to the ID of a stent using a customized electrode configured specifically for machining micro-sized features/structures.