Patents Assigned to Valted, LLC
  • Patent number: 9623039
    Abstract: Research into neuroprotective mechanisms has at its heart the goal of developing new therapeutic strategies to treat patients. For example, the compositions and induction strategies disclosed herein have use for acute injuries such as stroke or trauma, and would be extremely useful in treating patients undergoing cardiac bypass surgery, neurosurgery or other surgical cohorts where ischemia is a risk. Further, patients with subarachnoid hemorrhage, transient ischemic attacks, soldiers at risk for blast injury or patients suffering from chronic neurodegenerative diseases would also benefit from enhanced neuronal survival based upon the techniques and compositions disclosed herein. In addition, protecting against cell death by, for example, interfering with PAR polymer signaling via the compositions and processes disclosed herein, offers new therapeutic strategies for the treatment of neurologic disorders.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: April 18, 2017
    Assignee: VALTED, LLC
    Inventors: Ted M. Dawson, Valina L. Dawson, Shaida A. Andrabi, Ho Chul Kang
  • Patent number: 9274128
    Abstract: Parkinson's disease is caused by the preferential loss of substantia nigra dopamine neurons. A Parkin Interacting Substrate, PARIS (ZNF746) is identified. The levels of PARIS are regulated by the ubiquitin proteasome system via binding to and ubiquitination by the E3 ubiquitin ligase, parkin. PARIS is a KRAB and zinc finger protein that accumulates in models of parkin inactivation and in human brain Parkinson's disease patients. PARIS represses the expression of the transcriptional co-activator, PGC-1? and the PGC-1? target gene, NRF-1 by binding to insulin response sequences in the PGC-1? promoter. Conditional knockout of parkin in adult animals leads to progressive loss of dopamine (DA) neurons that is PARIS dependent. Overexpression of PARIS causes selective loss of DA neurons in the substantia nigra, which is reversed by either parkin or PGC-1? co-expression. The identification of PARIS provides a molecular mechanism for neurodegeneration due to parkin inactivation.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: March 1, 2016
    Assignee: VALTED, LLC
    Inventors: Ted M. Dawson, Valina L. Dawson, Han Seok Ko, Jooho Shin
  • Patent number: 8921042
    Abstract: Parkinson's disease is caused by the preferential loss of substantia nigra dopamine neurons. A Parkin Interacting Substrate, PARIS (ZNF746) is identified. The levels of PARIS are regulated by the ubiquitin proteasome system via binding to and ubiquitination by the E3 ubiquitin ligase, parkin. PARIS is a KRAB and zinc finger protein that accumulates in models of parkin inactivation and in human brain Parkinson's disease patients. PARIS represses the expression of the transcriptional co-activator, PGC-1? and the PGC-1? target gene, NRF-1 by binding to insulin response sequences in the PGC-1? promoter. Conditional knockout of parkin in adult animals leads to progressive loss of dopamine (DA) neurons that is PARIS dependent. Overexpression of PARIS causes selective loss of DA neurons in the substantia nigra, which is reversed by either parkin or PGC-1? co-expression. The identification of PARIS provides a molecular mechanism for neurodegeneration due to parkin inactivation.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: December 30, 2014
    Assignee: Valted LLC
    Inventors: Ted M. Dawson, Valina L. Dawson, Han Seok Ko, Jooho Shin
  • Publication number: 20140378536
    Abstract: Parkinson's disease is caused by the preferential loss of substantia nigra dopamine neurons. A Parkin Interacting Substrate, PARIS (ZNF746) is identified. The levels of PARIS are regulated by the ubiquitin proteasome system via binding to and ubiquitination by the E3 ubiquitin ligase, parkin. PARIS is a KRAB and zinc finger protein that accumulates in models of parkin inactivation and in human brain Parkinson's disease patients. PARIS represses the expression of the transcriptional co-activator, PGC-1? and the PGC-1? target gene, NRF-1 by binding to insulin response sequences in the PGC-1? promoter. Conditional knockout of parkin in adult animals leads to progressive loss of dopamine (DA) neurons that is PARIS dependent. Overexpression of PARIS causes selective loss of DA neurons in the substantia nigra, which is reversed by either parkin or PGC-1? co-expression. The identification of PARIS provides a molecular mechanism for neurodegeneration due to parkin inactivation.
    Type: Application
    Filed: September 12, 2014
    Publication date: December 25, 2014
    Applicant: VALTED, LLC
    Inventors: Ted M. Dawson, Valina L. Dawson, Han Seok Ko, Jooho Shin
  • Publication number: 20140045921
    Abstract: Parkinson's disease is caused by the preferential loss of substantia nigra dopamine neurons. A Parkin Interacting Substrate, PARIS (ZNF746) is identified. The levels of PARIS are regulated by the ubiquitin proteasome system via binding to and ubiquitination by the E3 ubiquitin ligase, parkin. PARIS is a KRAB and zinc finger protein that accumulates in models of parkin inactivation and in human brain Parkinson's disease patients. PARIS represses the expression of the transcriptional co-activator, PGC-1? and the PGC-1? target gene, NRF-1 by binding to insulin response sequences in the PGC-1? promoter. Conditional knockout of parkin in adult animals leads to progressive loss of dopamine (DA) neurons that is PARIS dependent. Overexpression of PARIS causes selective loss of DA neurons in the substantia nigra, which is reversed by either parkin or PGC-1? co-expression. The identification of PARIS provides a molecular mechanism for neurodegeneration due to parkin inactivation.
    Type: Application
    Filed: October 17, 2013
    Publication date: February 13, 2014
    Applicant: VALTED, LLC
    Inventors: Ted M. Dawson, Valina L. Dawson, Han Seok Ko, Jooho Shin
  • Patent number: 8603994
    Abstract: Parkinson's disease is caused by the preferential loss of substantia nigra dopamine neurons. A Parkin Interacting Substrate, PARIS (ZNF746) is identified. The levels of PARIS are regulated by the ubiquitin proteasome system via binding to and ubiquitination by the E3 ubiquitin ligase, parkin. PARIS is a KRAB and zinc finger protein that accumulates in models of parkin inactivation and in human brain Parkinson's disease patients. PARIS represses the expression of the transcriptional co-activator, PGC-1? and the PGC-1? target gene, NRF-1 by binding to insulin response sequences in the PGC-1? promoter. Conditional knockout of parkin in adult animals leads to progressive loss of dopamine (DA) neurons that is PARIS dependent. Overexpression of PARIS causes selective loss of DA neurons in the substantia nigra, which is reversed by either parkin or PGC-1? co-expression. The identification of PARIS provides a molecular mechanism for neurodegeneration due to parkin inactivation.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: December 10, 2013
    Assignee: Valted, LLC
    Inventors: Ted M. Dawson, Valina L. Dawson, Han Seok Ko, Jooho Shin