Patents Assigned to Vascular Architects, Inc.
  • Publication number: 20060235449
    Abstract: A vascular lining removal assembly comprises a plurality of slats, each having inner and outer surfaces, configured to pass along a vascular cleavage plane to removingly engage a length of vascular lining. In some embodiments the assembly may also include means for engaging the length of vascular lining to aid removal of the length of vascular lining. The inner surface of at least one of the slats may comprise an inwardly opening passageway to permit direct access to the length of vascular lining by a tool.
    Type: Application
    Filed: April 19, 2005
    Publication date: October 19, 2006
    Applicant: Vascular Architects, Inc., a Delaware Corporation
    Inventors: Peter Schubart, Gordon Stokes, D. Modesitt, Ted Thorson
  • Patent number: 6974473
    Abstract: A coiled stent graft, including a thrombolytic agent, is positionable within an AV fistula and optionally into one or both of the artery and the vein (6) to help reduce or eliminate blockages within the blood vessel at the junction between the AV fistula and the blood vessel.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: December 13, 2005
    Assignee: Vascular Architects, Inc.
    Inventors: Bruce J Barclay, Thomas J. Fogarty
  • Patent number: 6921414
    Abstract: An endoluminal prosthesis includes a coiled body and a graft material covering at least part of the coiled body to create a coiled stent graft. The average stent graft diameter to turns width ratio may be about 0.8 to 1 to about 2.4 to 1 when expanded.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: July 26, 2005
    Assignee: Vascular Architects, Inc.
    Inventors: Katherine J. Klumb, Thomas J. Fogarty, Kirti P. Kamdar, Bradley B. Hill
  • Patent number: 6660032
    Abstract: A coiled stent (196) has a coiled stent body with a main body portion (106) and end portions (108). The end portions may be substantially less stiff than the body portion to help prevent tissue trauma. A graft material (124) may be used to cover at least the main body portion to create a coiled stent graft (122) in which adjacent turns (128) have gaps defined therebetween to create a generally helical gap (130). The coiled stent may have side elements (10) separated by connector elements (112) and be placeable in a contracted, reduced diameter state and in a relaxed, expanded diameter state. The connector elements are preferably generally parallel to the stent axis when placed in the contracted, reduced-diameter state, typically tightly wrapped around a placement catheter (136).
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: December 9, 2003
    Assignee: Vascular Architects, Inc.
    Inventors: Katherine J. Klumb, Thomas J. Fogarty, Kirti P. Kamdar, Bradley B. Hill
  • Patent number: 6645237
    Abstract: A coiled stent (196) has a coiled stent body with a main body portion (106) and end portions (108). The end portions may be substantially less stiff than the body portion to help prevent tissue trauma. A graft material (124) may be used to cover at least the main body portion to create a coiled stent graft (122) in which adjacent turns (128) have gaps defined therebetween to create a generally helical gap (130). The coiled stent may have side elements (10) separated by connector elements (112) and be placeable in a contracted, reduced diameter state and in a relaxed, expanded diameter state. The connector elements are preferably generally parallel to the stent axis when placed in the contracted, reduced-diameter state, typically tightly wrapped around a placement catheter (136).
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: November 11, 2003
    Assignee: Vascular Architects, Inc.
    Inventors: Katherine J. Klumb, Thomas J. Fogarty, Kirti P. Kamdar, Bradley B. Hill
  • Patent number: 6585760
    Abstract: A coiled stent graft (10) is positionable within an AV fistula (4) and optionally into one or both of the artery (9) and the vein (6) to help reduce or eliminate blockages within the blood vessel at the junction (8) between the AV fistula and the blood vessel.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: July 1, 2003
    Assignee: Vascular Architects, Inc
    Inventor: Thomas J. Fogarty
  • Patent number: 6572643
    Abstract: An endoprosthesis delivery catheter assembly comprises a placement catheter having first and second catheter shafts. A handle includes a body and an actuator mounted to the body for movement relative to the body. The proximal portions of the first and second catheter shafts are mounted to the handle. At least one of the proximal portions of the first and second catheter shafts are drivenly coupled to the actuator so that movement of the actuator causes rotary and/or axial movement of the first and second catheter shafts relative to one another. The actuator may be mounted to the body for both rotary and axial movement relative to the body so that rotary and axial movement of the actuator causes corresponding relative rotary and axial movement of the first and second catheter shafts. The number of turns and/or the length of the coiled endoprosthesis may be selectively changed using a single actuator and then released from the catheter.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: June 3, 2003
    Assignee: Vascular Architects, Inc.
    Inventor: Ramsin Gharibadeh
  • Patent number: 6572648
    Abstract: An endoluminal prosthesis includes a coiled body and a graft material covering at least part of the coiled body to create a coiled stent graft. The average stent graft diameter to turns width ratio may be about 0.8 to 1 to about 2.4 to 1 when expanded.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: June 3, 2003
    Assignee: Vascular Architects, Inc.
    Inventors: Katherine J. Klumb, Thomas J. Fogarty, Kirti P. Kamdar, Bradley B. Hill
  • Patent number: 6562064
    Abstract: An embodiment of a placement catheter assembly (2) comprises an inner shaft (10) movably housed within a hollow outer shaft (8). A radially-expansible endoluminal prosthesis (6) is mounted about the inner shaft between the distal ends of the inner and outer shafts. Distal and proximal end release elements (22/28, 16/34), such as pull wires, are carried by the inner and outer shafts and releasably secure the prosthesis to the inner and outer shafts. The prosthesis in the radially contracted state and the distal and proximal end release elements together have a maximum diameter which is at most about equal to the diameter of the distal part (48) of the outer shaft to facilitate placement of the prosthesis.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: May 13, 2003
    Assignee: Vascular Architects, Inc.
    Inventor: Nicholas C. deBeer
  • Publication number: 20030028245
    Abstract: A coiled stent graft (10), including a thrombolytic agent, is positionable within an AV fistula (4) and optionally into one or both of the artery (9) and the vein (6) to help reduce or eliminate blockages within the blood vessel at the junction (8) between the AV fistula and the blood vessel.
    Type: Application
    Filed: June 26, 2002
    Publication date: February 6, 2003
    Applicant: Vascular Architects, Inc.
    Inventors: Bruce J. Barclay, Thomas J. Fogarty
  • Patent number: 6506178
    Abstract: A vascular occlusion-crossing assembly (2) includes an elongate delivery system (4) and a flexible elongate member (6) which passes along the body (34) of the delivery assembly. A laterally-extending, vascular tunica-separation guide (32) helps guide the distal end (36) of the delivery assembly between tunica layers (40, 42, 44) to a position distal of an occlusion (52). The distal portion (30) of a distally moving elongate member, typically a flexible hollow needle, is deflected into this distal lumen (54) on the far side of an occlusion (52). A guidewire (62) may be passed along the elongate member thereby crossing the occlusion.
    Type: Grant
    Filed: November 10, 2000
    Date of Patent: January 14, 2003
    Assignee: Vascular Architects, Inc.
    Inventors: Peter J. Schubart, Ted S. Thorson, John D. Martin
  • Patent number: 6488700
    Abstract: A catheter assembly includes a coiled endoluminal prosthesis (122, 190, 198) and a catheter (136) having at least first and second telescoping shafts (138, 140, 142). The prosthesis is releasably engaged to the distal ends (144, 146, 148) of the telescoping shafts. The prosthesis is capable of assuming a second, expanded diameter state from a first, reduced diameter state. The length and number of turns (128) of the coiled prosthesis can be changed by the relative translation and rotation of the shafts. The catheter assembly is especially useful for placing a coiled stent graft (122), in which one turn (132, 134) of the prosthesis has a greater pitch than the adjacent turns, at the intersection (184) of a bifurcation within a blood vessel (182). Remotely viewable marker elements (188, 190, 191, 192, 193, 195, 197) may be used and include a marker element (193, 190A, 197) configured to indicate orientation as well as axial position of the prosthesis.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: December 3, 2002
    Assignee: Vascular Architects, Inc.
    Inventors: Katherine J. Klumb, Thomas J. Fogarty, Kirti P. Kamdar, Bradley B. Hill
  • Publication number: 20020082682
    Abstract: A prosthesis, for use within a hollow body structure of a patient, comprises a coiled body having a radially-extending openings, the coiled body being movable from a radially-contracted state to a radially-expanded state. A material extends along a coiled path along the entire coiled body. A dispensable, biologically active agent is associated with at least one of the coiled body and material. The material may comprise a coiled sleeve of material having inner and outer surfaces, the inner surface defining a sleeve interior containing the coiled body. The dispensable agent may be, for example, on the outer surface of the material, incorporated into the material to create an agent/material matrix, or on the inner surface of the material or within the sleeve interior.
    Type: Application
    Filed: July 20, 2001
    Publication date: June 27, 2002
    Applicant: Vascular Architects, Inc.
    Inventors: Bruce J. Barclay, Kirti P. Kamdar, Katherine J. Klumb
  • Patent number: 6409652
    Abstract: The present invention provides a device, system and method for uniformly delivering a radiation dose over the surface area of a stenosed vessel during or after a percutaneous transluminal angioplasty procedure. A helical balloon is inflated in the region to be treated, preferably in contact with the vessel wall, and a radiation source is drawn through the helical coils of the balloon to provide a uniform dosage. Alternatively, the helical balloon is disposed within a cylindrical balloon and the helical balloon containing a radiation source with at least one coil is drawn through the cylindrical balloon.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: June 25, 2002
    Assignees: Vascular Architects, Inc., Varian Medical Systems, Inc.
    Inventors: Kirti P. Kamdar, Majid Leonard Riaziat, William K. Wheeler, Raisa Pavlyuchkova
  • Patent number: 6368266
    Abstract: A medical irradiation assembly (2) and method provides the target tissue (34) of a vessel (36) with a controlled dose of radiation in a simple, safe and effective manner. A catheter shaft (8) has a balloon (22) at its distal end (20) and a continuous loop, circumferentially-extending radiation source (32) configured to be expansible within the balloon and to be axially translated along and in contact with the inside surface (38) of the balloon by a pull wire (16). Proximal and distal radiation shields (18, 30) are used to house the radiation source, which may be a &bgr; source, before and after use. The continuous-loop radiation source stays in contact with the inside surface of the balloon so that the radiation source remains a constant distance, typically the thickness of the balloon, from the target tissue and irradiates the target tissue uniformly.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: April 9, 2002
    Assignee: Vascular Architects, Inc.
    Inventor: Nicholas C. deBeer
  • Patent number: 6328749
    Abstract: A remote endarterectomy ring stripper (1) includes an elongate shaft (8), having distal (36) and proximal (32) ends, an intima stripping ring (4, 34) mounted to the distal end of the elongate shaft and an intima cutter assembly having an intima cutting element (22, 42, 56, 60), at the stripping ring, operated by a user-operated cutting element actuator (10; 12, 50). Movement of the cutting element severs a length of intima (26), which has been separated from the wall (28) of the blood vessel (23), passing through the stripping ring.
    Type: Grant
    Filed: October 9, 1998
    Date of Patent: December 11, 2001
    Assignee: Vascular Architects, Inc.
    Inventors: Menno Kalmann, Franciscus Laureus Moll, Thomas J. Fogarty, Kenneth Mollenauer, Brian A. Glynn, Richard O. Murphy, Jay A. Lenker, Brian J. Cox
  • Patent number: 6248122
    Abstract: A catheter (4) includes a hollow catheter shaft (18), an inflatable balloon (36) surrounding the catheter shaft distal portion, and an expandable endoluminal prosthesis, such as a stent graft (38, 40), surrounding the balloon. The stent is typically a coiled stent having distal ends (58, 48) slidably housed within stent end holders (56, 50) on the catheter shaft. The first stent end is released from its holder by inflating the balloon. The second stent end is selectively released from its holder by other than inflating the balloon, typically by a push wire (30) pushing the second stent end out of its holder. A sheath (8) is moveable between a first position surrounding the stent and a second position spaced-apart from the stent. The stent is prevented from assuming its expanded-diameter state by (1) the engagement of the stent ends with the catheter shaft through the stent end holders, and (2) the sheath being in its first position during the introducing step.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: June 19, 2001
    Assignee: Vascular Architects, Inc.
    Inventors: Katherine J. Klumb, Thomas J. Fogarty, Kirti P. Kamdar
  • Patent number: 6238430
    Abstract: A catheter assembly includes a coiled endoluminal prosthesis (122, 190, 198) and a catheter (136) having at least first and second telescoping shafts (138, 140, 142). The prosthesis is releasably engaged to the distal ends (144, 146, 148) of the telescoping shafts. The prosthesis is capable of assuming a second, expanded diameter state from a first, reduced diameter state. The length and number of turns (128) of the coiled prosthesis can be changed by the relative translation and rotation of the shafts. The catheter assembly is especially useful for placing a coiled stent graft (122), in which one turn (132, 134) of the prosthesis has a greater pitch than the adjacent turns, at the intersection (184) of a bifurcation within a blood vessel (182). Remotely viewable marker elements (188, 190, 191, 192, 193, 195, 197) may be used and include a marker element (193, 190A, 197) configured to indicate orientation as well as axial position of the prosthesis.
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: May 29, 2001
    Assignee: Vascular Architects, Inc.
    Inventors: Katherine J. Klumb, Thomas J. Fogarty, Kirti P. Kamdar, Bradley B. Hill