Abstract: The invention relates to the use of an anti-tumour vaccine composed of two peptides of nine amino acids—native cryptic TERT572 (RLFFYRKSV, SEQ ID No. 1), expressed by tumour cells, and the optimised variant thereof TERT572Y (YLFFYRKSV, SEQ ID No. 2), for the treatment of a tumour expressing telomerase reverse transcriptase (TERT), in an HLA-A*0201 patient with a normal gamma glutamine transferase (gGT) level and/or a normal lactate dehydrogenase (LDH) level.
Abstract: The invention pertains to the use of a tumor vaccine composed of two peptides of nine amino acids—the WT cryptic TERT572 (RLFFYRKSV, SEQ ID No: 1) expressed by tumor cells and its optimized variant TERT572Y (YLFFYRKSV, SEQ ID No: 2)—for treating cancer in a HLA-A*0201-positive patient having a non small cell lung cancer (NSCLC) expressing TElomerase Reverse Transcriptase (TERT), wherein said patient is a never-smoker or a light-former smoker.
Abstract: The invention pertains to the use of a tumor vaccine composed of two peptides of nine amino acids—the WT cryptic TERT572 (RLFFYRKSV, SEQ ID No: 1) expressed by tumor cells and its optimized variant TERT572Y (YLFFYRKSV, SEQ ID No: 2)—for treating cancer in a HLA-A*0201-positive patient having a non-immunogenic tumor expressing TERT.
Abstract: The present invention relates to a method for preparing a vaccine formulation with an optimized polypeptide comprising three epitopes and MONTANIDE as adjuvant, for use in anti-cancer immunotherapy for administration to a human subject.
Abstract: The present invention provides novel methods and materials for efficiently treating patients having an HLA-B*0702 phenotype, based on peptides representing shared epitopes of tumor antigens. In particular, the invention relates to a method for identifying a HLA-B*0702-restricted peptide which can trigger a cytotoxic response against several antigens from one single multigenic family, and to several such epitopes.
Abstract: The invention pertains to an optimized chimeric polypeptide for use in HLA-337 cancer patients, which comprises four optimized peptides derived from cryptic tumor epitopes (CEA, TERT, MAGE and HER-2/neu) to enhance their immunogenicity.
Abstract: The present invention relates to a method for preparing a vaccine formulation with an optimized polypeptide comprising three epitopes and MONTANIDE as adjuvant, for use in anti-cancer immunotherapy for administration to a human subject.
Abstract: The present invention discloses peptides such as an isolated peptide consisting of an immunogenic HLA-A*2402-restricted epitope. For example, the isolated peptide may be selected from the group consisting of KYGVLLKTL (SEQ ID NO:11); RYMRQFVAL (SEQ ID NO: 12); RYVSRLLGI (SEQ ID NO: 13); RYGKGWDLL (SEQ ID NO: 14); RYLVQVQAL (SEQ ID NO: 15); and RYWELSNHL (SEQ ID NO: 16).
Abstract: The present invention pertains to the field of vaccination, and more particularly to the fields of antitumor and antiviral vaccination. The invention relates to the use of a native peptide in a medicinal composition, for selecting and/or boosting part of a CTL immune response which has been initiated by an optimized immunogenic peptide derived from said native peptide. The invention also concerns vaccination kits which comprise several doses of optimized peptides and of their cognate native peptides.
Abstract: The invention provides methods for identifying a HLA-B*0702-restricted cryptic epitope in an antigen, as well as methods for increasing the immunogenicity of HLA-B*0702-restricted cryptic epitopes. The HLA-B*0702-restricted cryptic epitopes and their cognate immunogenic epitopes are useful for stimulating an immune reaction against the cryptic epitopes in a subject. Accordingly, the invention further provides pharmaceutical compositions comprising a HLA-B*0702-restricted cryptic epitope or a cognate immunogenic epitope thereof, and vaccination kits comprising such epitopes. The novel materials of the invention are particularly useful for efficiently treating patients having an HLA-B*0702 phenotype.
Abstract: The present invention pertains to methods for identifying a HLA-A*2402-restricted cryptic epitope in an antigen, and for increasing its immunogenicity, in order to obtain HLA-A*2402-restricted epitopes able to trigger an immune response against HLA-A*2402-restricted cryptic epitopes. Isolated peptides consisting of cryptic or optimized HLA-A*2402-restricted epitopes are provided.
Abstract: The present invention pertains to the field of anti-cancer vaccines. More particularly, the invention concerns an optimized polypeptide, which comprises three cryptic tumor peptides with enhanced immunogenicity and comprises the amino acids sequence YLQVNSLQTVYLEYRQVPVYLEEITGYL (SEQ ID NO. 2), for use in an anti-cancer vaccine. Nucleic acids encoding such a polypeptide, as well as complexes and dendritic cells engineered with this polypeptide or a nucleic acid encoding it, are also part of the invention.