Patents Assigned to Velocys, Inc.
  • Patent number: 7442360
    Abstract: The present invention includes methods and apparatuses that utilize microchannel technology and, more specifically in exemplary form, producing hydrogen peroxide using microchannel technology. An exemplary process for producing hydrogen peroxide comprises flowing feed streams into intimate fluid communication with one another within a process microchannel to form a reactant mixture stream comprising a hydrogen source and an oxygen source such as, without limitation, hydrogen gas and oxygen gas. Thereafter, a catalyst is contacted by the reactant mixture and is operative to convert a majority of the reactant mixture to hydrogen peroxide that is withdrawn via an egressing product stream. During the hydrogen peroxide chemical reaction, exothermic energy is generated. This exothermic energy is absorbed by the fluid within the microchannel as well as the microchannel itself.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: October 28, 2008
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Y. Tonkovich, Bin Yang, William Allen Rogers, Jr., Paul William Neagle, Sean P. Fitzgerald, Kai Tod Paul Jarosch, Dongming Qiu, David J. Hesse, Michael Lamont
  • Publication number: 20080214884
    Abstract: Novel methods of electroless plating are described. Catalyst coatings can be applied within microchannel apparatus. Various reactions, including combustion and steam reforming, can be conducted over electroless catalyst coatings.
    Type: Application
    Filed: October 13, 2006
    Publication date: September 4, 2008
    Applicant: VELOCYS INC.
    Inventors: Francis P. Daly, Richard Long, Junko Ida, Rachid Taha, Terry Mazanec, Barry L. Yang
  • Publication number: 20070298486
    Abstract: The invention described herein concerns microchannel apparatus that contains, within the same device, at least one manifold and multiple connecting microchannels that connect with the manifold. For superior heat or mass flux in the device, the volume of the connecting microchannels should exceed the volume of manifold or manifolds. Methods of conducting unit operations in microchannel devices having simultaneous disrupted and non-disrupted flow through microchannels is also described.
    Type: Application
    Filed: June 14, 2007
    Publication date: December 27, 2007
    Applicant: Velocys Inc.
    Inventors: Ravi Arora, Anna Tonkovich, Dongming Qiu, Laura Silva
  • Patent number: 7305850
    Abstract: The disclosed invention relates to a process for distilling a fluid mixture in a microchannel distillation unit, the microchannel distillation unit comprising a plurality of microchannel distillation sections, the fluid mixture comprising a more volatile component and a less volatile component, the process comprising: flowing a vapor phase of the fluid mixture in a first microchannel distillation section in contact with a liquid phase of the fluid mixture, part of the more volatile component transferring from the liquid phase to the vapor phase to form a more volatile component rich vapor phase, part of the less volatile component transferring from the vapor phase to the liquid phase to form a less volatile component rich liquid phase; separating the more volatile component rich vapor phase from the less volatile component rich liquid phase; flowing the less volatile component rich liquid phase to another microchannel distillation section upstream from the first microchannel distillation section; and flowing
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: December 11, 2007
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Wayne W. Simmons, Laura J. Silva, Dongming Qiu, Steven T. Perry, Thomas Yuschak
  • Patent number: 7307104
    Abstract: The disclosed invention relates to a process for making an emulsion. The process comprises: flowing a first liquid through a process microchannel, the process microchannel having a wall with an apertured section; flowing a second liquid through the apertured section into the process microchannel in contact with the first liquid, the first liquid forming a continuous phase, the second liquid forming a discontinuous phase dispersed in the continuous phase.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: December 11, 2007
    Assignee: Velocys, Inc.
    Inventors: Dongming Qiu, Anna Lee Tonkovich, Laura J. Silva, Richard Q. Long, Barry L. Yang, Kristina Marie Trenkamp, Jennifer Anne Freeman
  • Patent number: 7294734
    Abstract: This invention relates to a process for converting a hydrocarbon reactant to a product comprising an oxygenate or a nitrile, the process comprising: (A) flowing a reactant composition comprising the hydrocarbon reactant, and oxygen or a source of oxygen, and optionally ammonia, through a microchannel reactor in contact with a catalyst to convert the hydrocarbon reactant to the product, the hydrocarbon reactant undergoing an exothermic reaction in the microchannel reactor; (B) transferring heat from the microchannel reactor to a heat exchanger during step (A); and (C) quenching the product from step (A).
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: November 13, 2007
    Assignee: Velocys, Inc.
    Inventors: John H. Brophy, Frederick A. Pesa, Anna Lee Tonkovich, Jeffrey S. McDaniel, Kai Tod Paul Jarosch
  • Publication number: 20070246106
    Abstract: The invention describes features that can be used to control flow to an array of microchannels. The invention also describes methods in which a process stream is distributed to plural microchannels.
    Type: Application
    Filed: April 20, 2007
    Publication date: October 25, 2007
    Applicant: Velocys Inc.
    Inventors: Anna Tonkovich, Ravi Arora, David Kilanowski
  • Patent number: 7255845
    Abstract: This invention relates to a process for conducting an equilibrium limited chemical reaction in a single stage process channel. A process for conducting a water shift reaction is disclosed. A multichannel reactor with cross flow heat exchange is disclosed.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: August 14, 2007
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Wayne W. Simmons, Kai Tod Paul Jarosch, Terry Mazanec, Eric Daymo, Ying Peng, Jennifer Lynne Marco
  • Patent number: 7250074
    Abstract: The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: July 31, 2007
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Dongming Qiu, Terence Andrew Dritz, Paul Neagle, Robert Dwayne Litt, Ravi Arora, Michael Jay Lamont, Kristina M. Pagnotto
  • Publication number: 20070154360
    Abstract: The invention describes microchannel apparatus and catalysts that contain a layer of a platinum aluminide. The invention includes chemical processes conducted through apparatus described in the specification.
    Type: Application
    Filed: October 13, 2006
    Publication date: July 5, 2007
    Applicant: VELOCYS INC.
    Inventors: Francis Daly, Richard Long, Barry Yang, Terry Mazanec, Frederick Pettit
  • Patent number: 7226574
    Abstract: A process is disclosed for converting a hydrocarbon reactant to a product comprising CO and H2. The process comprises: (A) flowing a reactant composition comprising the hydrocarbon reactant and oxygen or a source of oxygen through a microchannel reactor in contact with a catalyst under reaction conditions to form the product, the microchannel reactor comprising at least one process microchannel with the catalyst positioned within the process microchannel, the hydrocarbon reactant comprising methane, the contact time for the reactant composition within the process microchannel being up to about 500 milliseconds, the temperature of the reactant composition and product within the process microchannel being up to about 1150° C., the conversion of the hydrocarbon reactant to carbon oxide being at least about 50%. The product formed in step (A) may be converted to a product comprising CO2 and H2O in a microchannel reactor.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: June 5, 2007
    Assignee: Velocys, Inc.
    Inventors: Richard Q. Long, Anna Lee Tonkovich, Eric Daymo, Barry L. Yang, Yong Wang, Francis P. Daly
  • Patent number: 7220390
    Abstract: This invention relates to an apparatus, comprising: at least one process microchannel having a height, width and length, the height being up to about 10 mm, the process microchannel having a base wall extending in one direction along the width of the process microchannel and in another direction along the length of the process microchannel; at least one fin projecting into the process microchannel from the base wall and extending along at least part of the length of the process microchannel; and a catalyst or sorption medium supported by the fin.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: May 22, 2007
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Dongming Qiu, Richard Q. Long, Barry L. Yang, Thomas Yuschak, Steven T. Perry
  • Patent number: 7084180
    Abstract: The disclosed invention relates to a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. The disclosed invention also relates to a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: August 1, 2006
    Assignee: Velocys, Inc.
    Inventors: Yong Wang, Anna Lee Tonkovich, Terry Mazanec, Francis P. Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Shari Li, Michael D. Briscoe, Nathan Gano, Ya-Huei Chin
  • Patent number: 7029647
    Abstract: This invention relates to a process for making hydrogen peroxide in a microchannel reactor. The process comprises flowing a process feed stream and a staged addition feed stream in a process microchannel in contact with each other to form a reactant mixture comprising O2 and H2, and contacting a catalyst with the reactant mixture in the process microchannel to convert the reactant mixture to a product comprising hydrogen peroxide; transferring heat from the process microchannel to a heat exchanger; and removing the product from the process microchannel.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: April 18, 2006
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Kai Tod Paul Jarosch, David John Hesse
  • Patent number: 7014835
    Abstract: The invention is a process and device for exchanging heat energy between three or more streams in a microchannel heat exchanger which can be integrated with a microchannel reactor to form an integrated microchannel processing unit. The invention enables the combining of a plurality of integrated microchannel devices to provide the benefits of large-scale operation. In particular, the microchannel heat exchanger of the present invention enables flexible heat transfer between multiple streams and total heat transfer rates of about 1 Watt or more per core unit volume expressed as W/cc.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: March 21, 2006
    Assignee: Velocys, Inc.
    Inventors: James Allen Mathias, G. Bradley Chadwell, Dongming Qiu, Anna Lee Y. Tonkovich, Steven T. Perry, Matthew B. Schmidt
  • Patent number: 7000427
    Abstract: This invention relates to a process for cooling or liquefying a fluid product (e.g., natural gas) in a heat exchanger, the process comprising: flowing a fluid refrigerant through a set of refrigerant microchannels in the heat exchanger; and flowing the product through a set of product microchannels in the heat exchanger, the product flowing through the product microchannels exchanging heat with the refrigerant flowing through the refrigerant microchannels, the product exiting the set of product microchannels being cooler than the product entering the set of product microchannels. The process has a wide range of applications, including liquefying natural gas.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: February 21, 2006
    Assignee: Velocys, Inc.
    Inventors: James A. Mathias, Ravi Arora, Wayne W. Simmons, Jeffrey S. McDaniel, Anna Lee Tonkovich, William A. Krause, Laura J. Silva, Dongming Qiu
  • Patent number: 6989134
    Abstract: Novel methods of making laminated, microchannel devices are described. Examples include: assembly from thin strips rather than sheets; and hot isostatic pressing (HIPing) to form devices with a hermetically sealed wall. Laminated microchannel articles having novel features are also described. The invention includes processes conducted using any of the articles described.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: January 24, 2006
    Assignee: Velocys Inc.
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Timothy M. Werner, Matthew B. Schmidt, Robert J. Luzenski, G. Bradley Chadwell, James A. Mathias, Abhishek Gupta, David J. Kuhlmann, Thomas D. Yuschak
  • Patent number: 6969505
    Abstract: This invention relates to a process for conducting an equilibrium limited chemical reaction in a single stage process channel. A process for conducting a water shift reaction is disclosed. A multichannel reactor with cross flow heat exchange is disclosed.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: November 29, 2005
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Wayne W. Simmons, Kai Tod Paul Jarosch, Terry Mazanec, Eric Daymo, Ying Peng, Jennifer Lynne Marco
  • Patent number: 6652627
    Abstract: This invention relates to a process for separating a fluid component from a fluid mixture comprising the fluid component, the process comprising: (A) flowing the fluid mixture into a microchannel separator; the microchannel separator comprising a plurality of process microchannels containing a sorption medium, a header and a footer, the combined internal volume of the header and the footer being up to about 40% of the internal volume of the process microchannels; the fluid mixture being maintained in the microchannel separator until at least part of the fluid component is sorbed by the sorption medium; purging the microchannel separator to displace non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the fluid component from the sorption medium and flowing a flush fluid through the microchannel separator to displace the desorbed fluid component from the microchannel separator. The process is suitable for purifying oxygen as well as effecting other fluid separations.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: November 25, 2003
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Bruce F. Monzyk, Dongming Qiu, Matthew B. Schmidt, G. Bradley Chadwell, Wesley Bruno, Eric Burckle
  • Patent number: 6622519
    Abstract: This invention relates to a process for cooling a product in a heat exchanger, the process comprising: flowing a refrigerant through a set of first microchannels in the heat exchanger; flowing a refrigerant through a set of second microchannels in the heat exchanger, the refrigerant flowing through the set of second microchannels being at a lower temperature, a lower pressure or both a lower temperature and a lower pressure than the refrigerant flowing through the set of first microchannels; and flowing a product through a set of third microchannels in the heat exchanger, the product exiting the set of third microchannels having a cooler temperature than the product entering the set of third microchannels. This process is suitable for liquefying gaseous products including natural gas.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: September 23, 2003
    Assignee: Velocys, Inc.
    Inventors: James A. Mathias, Ravi Arora, Wayne W. Simmons, Jeffrey S. McDaniel, Anna Lee Tonkovich, William A. Krause, Laura J. Silva