Patents Assigned to Venture Scientifics, LLC
  • Publication number: 20030172662
    Abstract: A selectively controllable valve is arranged in a refrigeration circuit which interconnects the evaporator and the condenser and is controlled so that a pressure differential is built up across the valve. The valve is selectively opened to allow “batches” of working fluid to pass therethrough. In some embodiments, the working fluid which is allowed to pass through the valve, is heated in a chamber to increase the amount of pressure on the downstream side of the valve. This produces expanded pressurized working fluid which increases the pressure in the condenser and forces previously condensed and liquefied working fluid through a flow restricting transfer device into an evaporator. Condensation of the just heated gas in the condenser subsequently reduces the pressure on the downstream side of the valve and establishes conditions suitable for the passage of a further amount of gaseous working fluid while itself becoming liquid to be forced through the flow restricting transfer device.
    Type: Application
    Filed: March 14, 2003
    Publication date: September 18, 2003
    Applicant: VENTURE SCIENTIFICS LLC
    Inventor: Otto R. Butsch
  • Publication number: 20020017104
    Abstract: A selectively controllable valve is arranged in a refrigeration circuit which interconnects the evaporator and the condenser and is controlled so that a pressure differential is built up across the valve. The valve is selectively opened to allow “batches” of working fluid to pass therethrough. In some embodiments, the working fluid which is allowed to pass through the valve, is heated in a chamber to increase the amount of pressure on the downstream side of the valve. This produces expanded pressurized working fluid which increases the pressure in the condenser and forces previously condensed and liquefied working fluid through a flow restricting transfer device into an evaporator. Condensation of the just heated gas in the condenser subsequently reduces the pressure on the downstream side of the valve and establishes conditions suitable for the passage of a further amount of gaseous working fluid while itself becoming liquid to be forced through the flow restricting transfer device.
    Type: Application
    Filed: June 4, 2001
    Publication date: February 14, 2002
    Applicant: Venture Scientifics LLC
    Inventor: Otto R. Butsch
  • Publication number: 20010043450
    Abstract: Servo control using ferromagnetic core material and electrical windings is based on monitoring of winding currents and voltages and inference of magnetic flux, a force indication; and magnetic gap, a position indication. Third order nonlinear servo control is split into nested control loops: a fast nonlinear first-order inner loop causing flux to track a target by varying a voltage output; and a slower almost linear second-order outer loop causing magnetic gap to track a target by controlling the flux target of the inner loop. The inner loop uses efficient switching regulation, preferably based on controlled feedback instabilities, to control voltage output. The outer loop achieves damping and accurate convergence using proportional, time-integral, and time-derivative gain terms. The time-integral feedback may be based on measured and target solenoid drive currents, adjusting the magnetic gap for force balance at the target current.
    Type: Application
    Filed: January 30, 2001
    Publication date: November 22, 2001
    Applicant: Venture Scientifics, LLC
    Inventors: Joseph B. Seale, Gary E. Bergstrom
  • Patent number: 6208497
    Abstract: Servo control using ferromagnetic core material and electrical windings is based on monitoring of winding currents and voltages and inference of: magnetic flux, a force indication; and magnetic gap, a position indication. Third order nonlinear servo control is split into nested control loops: a fast nonlinear first-order inner loop causing flux to track a target by varying a voltage output; and a slower almost linear second-order outer loop causing magnetic gap to track a target by controlling the flux target of the inner loop. The inner loop uses efficient switching regulation, preferably based on controlled feedback instabilities, to control voltage output. The outer loop achieves damping and accurate convergence using proportional, time-integral, and time-derivative gain terms. The time-integral feedback may be based on measured and target solenoid drive currents, adjusting the magnetic gap for force balance at the target current.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: March 27, 2001
    Assignee: Venture Scientifics, LLC
    Inventors: Joseph B. Seale, Gary E. Bergstrom